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CHAPTER 1: INTRODUCTION 

Stability in Functional Analysis Setting 

The central problem of stability theory is to ascertain qualitative 

features of system behavior in the absence of knowledge of specific 

system solutions. Typically an intuitive notion of the type of behavior 

desired is expressed in the form of a precise mathematical definition 

of stability. Then conditions on system parameters are sought which are 

sufficient to guarantee the system displays this type of stability. Here 

it is desired that a system be characterized by one of the following two 

types of behavior: 

(1) The system is not explosive. 

(2) The system is not critically sensitive to noise. 

Concepts from functional analysis provide an appropriate vehicle for 

translating these notions of desired behavior into stability definitions. 

First a suitable model of a system is required. Here a system is 

viewed in a "black box" sense as a mathematical relation which connects 

input functions from an input space with output functions from an output 

space. A relation is not explosive if inputs of finite "size" correspond 

only to outputs of finite "size". The notion of "size" is given a 

mathematical interpretation as a norm on a function space. Then a 

relation is not explosive if each set of bounded inputs corresponds 

to a set of bounded outputs. Such a relation is termed bounded. A 

problem occurs here due to the fact that the usual spaces from analysis 

contain only bounded functions. These spaces are unacceptable for use 

as output spaces since it would be required at the outset that bounded 



www.manaraa.com

2 

inputs lead to bounded outputs. This difficulty is obviated by employ­

ing an enlargement of the typical normed space, the extended space, as 

the space of input and output functions. 

The other type of stable behavior considered here is lack of 

critical sensitivity to noise. Intuitively this type of behavior Is 

displayed by a relation where Inputs arbitrarily "close" to each other 

lead to outputs arbitrarily "close" to each other. This notion of 

stability is made precise by utilizing the norm of the difference of 

two functions in a function space as a measure of their "closeness". 

Then lack of critical sensitivity to noise is seen to be equivalent 

mathematically to continuity. Another useful physical interpretation 

of continuity is that it precludes the jump phenomenon. 

Gain and Sector Conditions 

Boundedness results are presented here in terms of gain or sector 

conditions on certain relations. The gain of a relation is roughly 

defined as the maximum ratio of the norm of the output to the norm of 

the input. This Is an appealing definition in view of the notion of 

gain employed in the linear theory. The sector condition is a generali­

zation of the gain condition which allows the boundedness results to 

find much wider application. 

Incremental counterparts to gain and sector conditions are employed 

to arrive at continuity results. Loosely speaking, the Incremental gain 

of a relation is defined as the maximum ratio of the norm of the deviation 

In the output to the norm of the deviation in the input. A generalization 

of the Incremental gain condition leads to the Incremental sector condition. 
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Interesting practical interpretations of sector conditions can 

be given for certain function spaces. For instance, consider relations 

having input and output spaces which are extensions of the space of 

square integrable functions. A raemoryless nonlinearity satisfies a 

certain sector condition if its graph lies within a region of the 

plane enclosed by two lines passing through the origin. If the further 

restriction is made that the slope of the nonlinearity lies between 

two particular constants, then a certain incremental sector condition 

is satisfied. For a linear time-invariant system a sector condition 

and its incremental counterpart are equivalent. Further, it is found 

that if the Nyquist diagram is situated appropriately relative to a 

particular circle in the complex plane then a certain sector condition 

is satisfied. 

Multiple-Loop System 

The idea of a multiple-loop system is translated into precise 

mathematical terms as a set of simultaneous functional equations. A 

block diagram corresponding to these equations takes the form of an 

interconnection of a number of relations. The input supplied to each 

relation is composed of a general system input plus a weighted sum of 

outputs provided by other relations. The set of inputs and outputs of 

the relations whose interconnection produces the multiple-loop system 

is viewed as the set of general system outputs of the multiple-loop 

system. Stability of the multiple-loop system is interpreted in terms 

of stability of the collection of relations which connect the general 

system input with each of the general system outputs. If each of 
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these relations is stable, then the multiple-loop system is referred 

to as stable. 

Here stability results are presented in terms of the interconnec­

tion structure of a multiple-loop system and in terms of the gains of 

the relations which are interconnected. For a single-loop system these 

results lead to the intuitively appealing conclusion that an open-loop 

gain product less than unity implies closed-loop stability. 

It is found that a certain transformation of a multiple-loop system 

allows gain stability conditions to be generalized to sector stability 

conditions. Due to this transformation, the theory finds much wider 

application than at first seems possible. One illustration of sector 

results is provided by considering a multiple-loop system which is an 

interconnection of an arbitrary number of memoryless nonlinearities 

with a number of linear time-invariant relations. For such a system, 

stability conditions can be found involving Nyquist diagrams of the 

linear parts and requiring the nonlinearities to satisfy certain sector 

conditions. Tn the case of s single loon these results reduce to 

previously obtained results [8], [16] reminiscent of the Nyquist crite­

rion. Further manipulation leads to the familiar Popov conditions [16]. 

From the manner in which results are proven,it is clear that if 

the stability conditions are satisfied then bounds on system outputs or 

deviations in system outputs can actually be calculated. If tighter 

restrictions are placed on system parameters, then tighter bounds are 

obtained. In this sense the margin by which a system satisfies stability 

conditions is a measure of "how stable" that system is. Hence, some 
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feeling can be obtained for the "degree of stability" of a multiple-

loop system. 

Single-Loop System 

All stability results obtained prior to this investigation pertain 

only to a single-loop system. The results presented here are most closely 

related to results presented by Zames [15] and Sandberg [10]. In fact, 

it is found for the special case of a single-loop that the multiple-loop 

stability conditions specialize to conditions Zames [15] presents. 

From a certain perspective the multiple-loop formulation is no 

more general than the single-loop. After all, any multiple-loop system 

can be represented as a single loop possessing open-loop elements which 

are multiple-input multiple-output. Then the single-loop theory applies. 

A disadvantage of this approach is that it tends to hide the influence 

the actual structure of the interconnection has on the problem. An 

advantage of the single-loop view is that fewer stability conditions 

are Imposed on the system. However, these conditions are in general 

more difficult to verify than ones found from the multiple-loop view. 

Outline 

In Chapter 2 some necessary nomenclature is established. Prior 

results pertinent to this investigation are discussed in Chapter 3. 

In Chapter 4 new results are presented. A detailed description of what 

is meant here by a multiple-loop system is given followed by several 

stability theorems. Several applications of the theory are presented 

in Chapter 5. The conclusion is provided by Chapter 6. 
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CHAPTER 2: NOTATION 

The symbol e denotes set inclusion. Union is denoted by U and 

intersection by H• The supremum and maximum are denoted, respectively, by 

sup and max. The symbol j is used for and s always denotes a complex 

number with real part a and imaginary part to. The conjugate of a complex 

number a is denoted by a. denotes an n-dimensional Euclidean space. 

For the vectors x,yER^ the notation x ̂  y is used to indicate each compo­

nent of X is less than or equal to the corresponding component of y. 

The notation f:X > Y refers to the mapping f from the set X into 

the set y. The notation lx:A} is interpreted as the set of all x such 

that condition A is satisfied. The cartesian product of two spaces is 

defined by X * Y = {(x,y):xeX and yeY}. 

The identity matrix is denoted by I, a matrix with i,j^^ element 

a^j is denoted by [a_j], and a diagonal matrix with i*"^ diagonal 

element a^ is denoted by [diag au]. The transpose of the matrix A is 

T * denoted by A and the conjugate-transpose by A . The positive square 

root of the maximum eigenvalue of A A is denoted by E{A}, For a square 

I I  .  - 1  
matrix A, the determinant is denoted by [Aj and the inverse by A 

Following the notation of [1], a minor of the matrix A is given by 

(h' h S\ 

k^, kg, k y 

Vi Vz 

igki igkg ig^p 

%"! 'Vz 
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where i, < !„ < < i and k, < k„ < < k . The principal minors 
i Z p 16 P 

are those for which i^ = k^ for each j = 1,2,...,p. For an m x m 

matrix A the successive principal minors are 

4i) 2 -
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CHAPTER 3: PREVIOUS RESULTS 

Relevant past investigations of stability in a functional analysis 

setting are discussed here. All prior efforts have been directed towards 

analysis of single-loop systems. The first result discussed deals with 

a system having an open loop composed of a multiple-input multiple-

output linear time-invariant part in cascade with a bank of nonlinear-

ities. For this system Sandberg [10] provides a stability result having 

a frequency-domain interpretation. Next some stability results concerned 

with boundedness and continuity of a certain pair of functional equations 

are discussed. These results which are due to Zames [15] are phrased in 

terms of gain and sector conditions. A discussion of several interpreta­

tions of sector conditions concludes this chapter. 

There is one detail which should be made clear at the outset. All 

results discussed here are posed in such a manner as to separate 

questions of existence and uniqueness of solutions from questions of 

stability of solutions. This is certainly a logical separation and 

means for a stable system that whatever possibly nonunique solutions 

exist display the appropriate properties. Existence and uniqueness 

can often be established by use of the appropriate fixed point theorem 

[3], 14], L7]. 

A Frequency-Domain Result 

Here a stability result is given for the system represented in 

Fig. 1. The block L represents a multiple-input multiple-output 
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linear time-invariant system while the block N represents a bank of 

nonlinearities. 

nonlinear 
g(t)_+ f(t) q(f(t),t) 

linear 

Fig. 1. Single-loop system having open loop composed of linear 
part in cascade with bank of nonlinearities. 

First a suitable space for input and output functions is defined. 

Assume the functions to be dealt with are n-vector-valued functions of 

time. Consider the space 

LggCO,™) = {f:f is measurable and f "(t)f (t)dt<«'}. 

The space desired is the extension of this space given by 

E = {f:f is measurable and f^(v)f(v)dv<" for all teCO,"»)}. 
" 0 

Now N and L are described further and the system equations given. 

N is characterized by a function qzR^^ x R where 

q(f(t),t) = [q^(fj^(t) ,t) ,q2(f2(t) ,t) . .. ,q^(f^^(t) ,t)]^ 

and the q^ are real-valued functions with the following properties for 

each i: 

(1) q^(0,t) = 0 for all te[0,<»). 
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q^Cw.t) 
(2) There exist real numbers a and b such that a _< ^ b 

w 

for all w f 0 and all te[0,~). 

(3) q^^w(t),t) is a measurable function of t whenever w(t) is 

measurable. 

L is characterized by an n * n matrix weighting function k(t). It is 

assumed each element of this matrix is in L^[0,*X Then L takes any 

input uELg^CO,*) into an output heL2^[0,~) by the integral equation 

h(t) = k(t-v)u(v)dv. 
0 

It is not assumed L is described by an ordinary differential equation. 

However, if this is the case it appears at first that initial conditions 

can not be accounted for. This is not true because examination of the 

block diagram shows the negative of the initial condition response can 

be added to g and in this manner included in the analysis. Now the 

system equations represented by Fig. 1 are seen to be 

g(t) = f(t) + k(t-v)q(f(v),v)dv. 

The following theorem pertains to this system and is a special 

case of an abstract result presented by Sandberg [10]. 

Theorem 1: Let geL2^[0,'*') and feE^ satisfy the system equations. 

Def ine 

K(s) = / k(t)e ®^dt for o ̂  0. 
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Suppose that 

(1) |l + ̂(a + b)K(s) 1 î' 0 for o > 0, and 

(2) ^(b - a) sup E{[I + 4(3 + b)K(jw)] ̂ K(jw)} < 1. 
^ 6J 

Then feL^^CO,®).| 

It is interesting to observe that the a_ priori restriction of 

feE^ is tantamount to assuming no finite escape tim.e. The next theorem 

is also given in [10]. 

Theorem 2: Assume the hypotheses of Theorem 1 are satisfied, 

g(t) ̂  0 as t + and the elements of k(t) are each in LgCO,»). Then 

f (t) + 0 as t I 

Sandberg shows that for n = 1 conditions (1) and (2) of Theorem 1 

admit an interpretation in the complex plane. In [8] it is found that 

for b > 0 conditions (1) and (2) are satisfied if one of the following 

is true: 

(1) For a > 0 the locus of K(j w) for lies outside 

the circle with center (-^ (a ̂  + b •*'),0) and radius jCa - b ^), 

1 -1 -1 
and this locus does not encircle the point (-^(a + b ),0). 

(2) For a = 0 the real part of K(j w) is greater than -b 

for all u). 

(3) For a < 0 the locus of K(jw) for a)e(-",®) is contained 

1 - 1  - 1  
within the circle with center (-^(a " + b *),0) and radius 

|(b-^ - ,-1). 

The above are illustrated in Fig. 2 where the locus must lie in the 

shaded region for the appropriate condition to be true. 
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/ 

K(j(o) 

% 
/% 1 

b ^ a 

(c) 

Fig. 2. Frequency-domain stability conditions. 

(a) a > 0. 

(b) a = 0. 

(c) a < 0. 

Now assume n = 1 and the block L is described by the ordinary 

differential equation 

j=0 J j=0 J 

where the a^ and b^ are real constants, the superscript denotes the 

order of the differentiation, and a^ ̂  0. Assume there is no general 

input to the system so that g is the negative of the initial condition 
m , 

response of L. Further, assume the zeros of the polynomial E a-S-" 
j=0 -

are strictly in the left half plane. Then by Theorem 2, if a solution 

exists, all that is needed to infer f(t) ->• 0 as t ̂  is that K(jw) 

satisfy one of the conditions illustrated in Fig. 2 and the nonlinearity 
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q satisfy the earlier listed conditions. Here then is an answer to the 

often asked question; Under what conditions will the system response 

go to zero from arbitrary initial conditions? 

There is clearly much similarity between the above and the familiar 

Nyquist criterion from the linear theory. In fact, if a = b the above 

conditions are identical with the Nyquist criterion. This connection 

with the linear theory gives reason to believe that these results are 

at least in the right "ball park". 

Further stability results involving frequency-domain conditions 

are obtained in [9] for an type of stability. Also systems modeled 

by difference equations are considered. In [11] results are given 

which provide continuity, exponential bounds, and ultimate periodicity 

of system responses. 

Stability Results Involving Gain and Sector Conditions 

Boundedness and continuity results obtained for a certain pair of 

functional equations are discussed here. These results presented by 

Zames [15] are phrased in terms of gain and sector conditions. First a 

suitable space for input and output functions of time is defined. 

Then the precise mathematical model used for a system is discussed, 

and definitions are given for boundedness and continuity. Finally, 

definitions of gain and sector conditions are given and stability theorems 

presented. 

All input and output functions are real-valued and defined on the 

time interval T which is of the form [tg,™) or The notion of 
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truncation of such functions is employed to define extensions of the 

usual spaces of analysis. 

Definition: For a real-valued function x defined on T the trunca­

tion at time teT is given by 

^x(t) for T < tl 
Xt(T) =( > 

^0 for T ^ tj 

Appendix A contains the definition of a normed linear space. The 

following definition deals with a special kind of normed linear space. 

Definition: X is a space of real-valued functions on T possessing 

the following properties: 

(1) X is a normed linear space where if xeX the norm of x 

is denoted by ||x||. 

(2) If xeX then x^eX for all teT. 

(3) If X is such that x^eX for all teT, then 

(a) is a nondecreasing function of teT, and 

(b) lim ||x II is finite if and only if xcX where 

lim I|x I I = I|x|I if X does belong to X.| 
t-)-oo 

Many of the common function spaces satisfy the conditions placed on 

X. For instance, these conditions are satisfied by the spaces for 

p = 1,2,...,". Appendix A contains a discussion of spaces. From 

the viewpoint of applications, the space of square integrable func­

tions and the L space of bounded functions are of particular interest. 
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Now an extension of the space X is defined which serves as a 

suitable space for input and output functions in the stability problem 

formulation. 

Definition: The extended space is the linear space of real-

valued functions of time each having all finite truncations in X. Thus, 

X = {x:x is a real-valued function on T and 
e 

X|_iX for all tcT}. 

An extended norm is defined for xcX^ by | |x| |^ = ||x|| if xeX and 

I|x|Ig = " if xfX.I 

It should be noted that despite the definition of the extended 

norm the linear space X^ is not a normed linear space. 

Since the extended space contains "explosive" functions, it becomes 

a suitable space for inputs and outputs where X is not. Use of X for 

inputs and outputs would require knowing ̂  priori that the system is 

not explosive. This would result in assuming stability to prove 

stability. 

The definition of X^ makes the significance of assumptions (2) and 

(3) in the definition of X clear. Assumption (2) guarantees X^ is an 

enlargement of X by implying XC X^. If xeX^ then assumption (3) allows 

determination of whether or not x has finite norm by examining lim j|x ||. 
t^oo 

This fact is crucial to the proofs of stability theorems presented later. 

The precise mathematical model of a system employed here is that 

of a relation defined below. 
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Definition: A relation H on is a subset of the product space 

X^ X X^. If (x,y)eH then y is said to be an image of x under H and is 

often denoted by Hx. The notation Hx(t) refers to the value of an 

image of x under H at time t. The domain of H is defined by 

Do(H) = {x: there exists a y so that (x,y)eH}, 

and the range of H is defined by 

Ra(H) = {y: there exists an x so that (x,y)eH}. 

If A is a subset of X^, the image of A under H is defined by 

HA = {y: (x,y)eH and xeA fl Do(H)}.| 

Appendix B contains further discussion of relations. If H and K 

are relations and c is a real constant, then the sum H + K, the product 

cH , and the composition product KH are defined in the usual way. 

Further, the inverse relation H ^ always exists, and the identity rela­

tion is denoted by I. A relation which is single-valued and has the 

entire X^ space as domain is termed an operator= 

It is interesting to observe that use of X^ in defining a relation 

essentially requires the relation to have no finite "escape time". This 

is due to the fact that an output truncated at a finite time must have 

a finite norm. 

Systems for which it makes sense to speak of initial conditions 

can be modeled as a relation in basically two ways. A single relation 

can be used which is multiple-valued having each output correspond to 

a different initial condition. An alternative is to use a different 

relation corresponding to each initial condition. If the system is 
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l.iu(jar and de.scribed by a set of ordinary differential equations, then 

a relation can be utilized to account only for the forced response and 

the initial condition response can be simply added to the output. 

Now the stability properties of boundedness and continuity are 

defined. 

Definition: A subset S of X is said to be bounded if there 
e 

exists a real number D such that if xeS then ||x||^ < D. A relation 

H on is bounded if the image of every bounded subset of X^ is itself 

a bounded subset of X . I 
e ' 

Note this definition is stronger than simply saying the image of 

each input of finite norm is itself of finite norm. In the latter 

case it might be possible to have a sequence x^,n = 1,2,..., with 

1ix^lI = 1 and 1|Hx^|| = n for each n. 

Definition: A relation H on X is continuous if for each e > 0 
e 

there exists a 6 > 0 such that if xeDo(H), yeDo(H), and ||x-y(< 6 

then I IHx-Hy|]^ < e.| 

It is interesting to observe that x-y can have a finite norm 

even if x and y both have infinite norms. This leads to the fact that 

for a continuous relation explosive inputs which are arbitrarily "close" 

to each other lead to outputs which are also arbitrarily "close" to 

each other. It is also interesting to observe that continuity is 

incompatible with the jump phenomenon. Further it should be noted 

that a continuous relation must be single-valued. 
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In [15] Zames investigates boundedness and continuity of the single-

loop system illustrated in Fig. 3. The functional equations describing 

this system are 

e^^ = a^x ̂  ^ ̂2 

~ ̂ 2* ^2 ^1 
(1) 

^2 ° "2^2 

where it is assumed that: 

H, and H_ are relations on X . 
12 e 

X in is an Input. 

a^ and are real constants. 

and Wg are fixed biases in X. 

^1* ^2' ^1* ^2 \ output 

Fig. 3. Block diagram of single-loop system. 
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For stability purposes interest is focused on the relations which 

connect the input x to each of the outputs e^^, e^, y^ and y^. These 

relations are designated by E^, E^, and Fg, respectively. E^ is 

defined by 

E^ = {(x,e^):(x,e^)GX^ x and there exists e^, y^, 

H^e^, and HgCg such that (1) is true}. 

The relations E^, F^, and Fg are similarly defined. 

From earlier discussion it is seen that the biases and Wg can 

be used to account for initial condition responses. 

At this point it is interesting to observe how the use of a rela­

tion as the basic system model makes it possible to avoid questions of 

existence and uniqueness of solutions. Examining E^, for instance, it 

is clear the domain of E^^ is not required to be the entire space. 

Hence, it is not required that there exist a solution corresponding 

to each input. Further, for an input x which is in the domain of 

it is not required the corresponding e^ be unique. 

Certainly in most problems it is desired that there exist unique 

solutions. However, it may be extremely difficult to mathematically 

determine this. By formulating the problem in terms of relations this 

poses no difficulty for the stability analysis. This sort of situation 

occurs, for instance, if the relation Hg is a hysterises nonlinearity 

and the realtion H^^ is linear, time-invariant, and modeled by a set of 

ordinary differential equations. 
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Another reasonable approach to the stability problem is to use an 

operator as the basic system model. Since an operator is single-valued 

and has the entire space as domain, this approach requires the a 

priori assumption of existence of unique solutions. 

Now the notion of gain is made precise for a relation. 

Definition: For a relation H with all (Hx)^ = 0 whenever = 0, 

xeDo(H), and teT, the gain is defined by 

I|(Hx)tlI 
g(H) = sup 

I KM 

where the supremum is taken over all xeDo(H), all HxeRa(H), and all 

teT for which x^ f 0.| 

The following inequalities are obtained directly from the defini­

tion of gain and are crucial to proofs of stability theorems: 

||(Hx)^|| <. g(H) ||x^l| for xeDo(H) and teT, 

I |HX| Ig <. g(H) ||x||g for xeDo(H). 

The second follows from the first on letting t + 

Now a theorem proven by Zames [15] which provides boundedness 

conditions for the single loop system is presented. 

Theorem 3: The relations E^, E^, F,, and F^ associated with the 

single-loop system are bounded if g(H^)g(H2) < l.| 
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The incremental counterpart of the definition of gain is supplied 

by the following definition. 

Definition: For a relation H with all (Hx-Hy)^ = 0 whenever 

(x-y)^ = 0, X and yeDo(H), and teT, the incremental gain is defined by 

||(Hx-Hy)J| 
g(H) = sup — — 

ll(x-y)tlI 

where the supremum is taken over all x,yeDo(H), all Hx,HyeRa(H) , and 

all teT for which (x-y)^ f 0.| 

The following inequalities similar to those for the nonincremental 

case are satisfied: 

I I (Hx-Hy)^l I £ g(H) I l(x-y)j.| | for x and yeDo(H) and teT, 

IiHx-Hyl1^ £ g(H) I|x-y|for x and yeDo(H). 

Now a continuity theorem given in [15] is presented. 

Theorem 4: The relations E^, Eg, F^, and Fg associated with the 

single-loop system are continuous if < 1.| 

It is often true that the problem can be presented in such a manner 

that zero is in the domains of both and and has a unique image of 

zero under both relations. In this situation the condition of Theorem 4 

is also sufficient for boundedness. This is seen by setting y = 0 in 

the definition of incremental gain. Then it is clear that g(H^)g(H2) < 1 

implies g(H^)g(H2) < 1. 
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A certain transformation of the single-loop system results in a 

significant generalization of Theorems 3 and 4. It is found many more 

systems can be examined than at first appears possible. The effect of 

the transformation on stability conditions is to change them from gain 

restrictions to conicity restrictions. Following is the definition of 

a conic relation. 

Definition: A relation H on X is interior conic with center 
e 

parameter c and radius parameter r ̂  0 if 

I |(Hx)j.-cx^| I £ r| |x^| I 

for all xeDo(H), all HxeRa(H), and all teT. H is exterior conic with 

center parameter c and radius parameter r ̂  0 if the above inequality 

is reversed.| 

If X is an inner product space another notation defined below can 

be employed to specify the nature of a conic relation. The definition 

of au ianer product space is given in Appendix A. 

Definition: Assume H is a relation on the extension of an inner 

product space. H is inside the sector {a,b} if a £ b and 

<(Hx)j. - ax^, (Hx)^ - bx^> _< 0 

for all xeDo(H), HxeRa(H), and tel. H is outside the sector {a,b} 

if the inequality is reversed.| 

For the special case of an inner product space the specific corres­

pondence between conicity conditions and sector conditions is indicated 
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by the following two statements. A relation H is interior (exterior) 

conic with center parameter c and radius parameter r if H is inside 

(outside) the sector {c-r, c+r). Conversely, a relation H is inside 

(outside) the sector {a,b} if H is interior (exterior) conic with 

center parameter -^(a+b) and radius parameter •j(b-a). 

It is of interest to consider the situation where b goes to 

infinity in the definition of a sector. For a = 0 this limiting case 

is covered by the following definition of positivity. 

Definition: A relation H on the extension of an inner product 

space is positive if 

<x^,(Hx)^> >_ 0 

for all xeDo(H), all HxeRa(H), and all tel.| 

An incremental counterpart for each of the three preceding 

definitions is provided by the following definitions. 

Definition: A relation H on is incrementally interior conic 

with center parameter c and radius parameter r ^ 0 if 

I I (Hx-Hy) ̂ - c (x-y) ̂ | | <_ r| | (x-y) ̂ | | 

for all x,yeDo(H), all Hx,HyeRa(H), and all tel. H is incrementally 

exterior conic with center parameter c and radius parameter r ^ 0 

if the above inequality is reversed.] 

Definition: Assume H is a relation on the extension of an inner pro­

duct space. H is incrementally inside the sector {a,b} if a £ b and 



www.manaraa.com

24 

<(Hx-Hy)^ - a(x-y)^, (Hx-Hy)^ - b(x-y)^> <. 0 

for all x,yeDo(H), all Hx,HyeRa(H), and all tel. H is incrementally 

outside the sector {a,b} if the above inequality is reversed. | 

Definition: Assume H is a relation on the extension of an inner 

product space. H is incrementally positive if 

<(x-y)j., (Hx-Hy)^> _> 0 

for all x,yeDo(H), all Hx,HyeRa(H), and all teT.| 

It is easily found that for the special case of an inner product 

space the same type of correspondence exists between the incremental 

versions of conicity and sector conditions as for the nonincremental 

versions. 

Now two theorems are presented which provide sufficient boundedness 

and continuity conditions phrased in terms of sector conditions. 

Theorem 5: Let the open-loop relations and of the single-

loop system be conic. Suppose for constants y and e where one is 

positive and one is zero that 

(1) -H2 is inside the sector {a+y, b-y} where b > 0, and 

(2) satisfies one of the following conditions: 

Case la: If a > 0 then K, is outside the sector 
1 
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Case lb: If a < 0 then is inside the sector 

Case 2: If a = 0 then - e)I is positive 

and if Y = 0 then g(H^) < 

Then the relations E^, F^, and associated with the single-

loop system are each bounded.| 

Theorem 6: Suppose all hypotheses of Theorem 5 are replaced by 

their incremental counterparts. Then the relations E^, £2» F^, and Fg 

associated with the single-loop system are each continuous.) 

For the special case of an inner product space it is easily found 

that the gain theorems can be obtained from the sector theorems. To 

show this assume g(H^)g(H2) < 1. Theorem 5 can be utilized to find 

boundedness is implied. In this manner the results of Theorem 3 are 

obtained. First note that from 

||(H^x)^|| £ g(H^) l|xj.|| for all xeDo(H^), all H^xERa(H^), and 

all teT 

it is inferred that is interior conic with center parameter zero 

and radius parameter g(H^). Now this implies is inside {-g(H^), 

g(H^)}. Similarly it is found that is inside {-gCHg), gCHg)}. 

Now define e by e » ^ - g(H^). e is positive since g(H^)g(H2) < 1. 
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This results in being inside {- ^ + e, ^ - e}. But setting 

Y = 0 in Theorem 5, it is seen from Case lb that the relations E^, 

, and F2 associated with the single-loop system are bounded. Using 

similar reasoning it is found that Theorem 4 can be obtained from 

Theorem 6. 

Interpretations of Sector Conditions 

Several interpretations of sector conditions for particular types 

of relations are available. Here some results presented by Zames [15], 

[16] are discussed. For a certain class of linear time-invariant opera­

tors on it is found sector conditions can be phrased in terms 

of conditions imposed on the Nyquist diagram. In general, for any rela­

tion on LggCO,*), it is found certain conditions having an interpreta­

tion in the output versus input plane are sufficient for satisfaction 

of sector conditions. These conditions referred to as instantaneous 

sector conditions find particular application to memoryless nonlinear-

ities, nonlinearities which are time varying, and hysteresis nonlinear-

ities. 

First consider the class of linear time-invariant operators defined 

below. 

Definition; Q is the class of operators on satisfying an 

equation of the type 

Hx(t) = h^x(t) + h(t-v)x(v)dv 
0 
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where is a constant, the impulse response hEL^[U,*0, and for some 

0 < 0  t h e  f u n c t i o n  h ( t ) e  °  l i e s  i n  L0>°°) • 1 
o i 

The L.'iplace transform of members of Q provides the means by which 

sector conditions can be interpreted In the complex plane. 

Definition: The Laplace transform H(s) of HcQ is given by 

—  - S t  I  
H(s) = h^ + J h(t)e ' dt for a 2. 1 

Of course any linear time-invariant system modeled by a set of 

ordinary differential equations possesses a Laplace transform as defined 

above. Further, this is regardless of whether or not the impulse 

response lies in L^LU,^), but the transform may not be defined for all 

0 ̂  0. it is easily found that such a system has a corresponding inte­

gral equation in the class Q if and only if the poles of the Laplace 

transform lie strictly in the left half complex plane. 

The following lemma proven in [16] phrases sector conditions in 

terms of the behavior of the Nyquist diagram in the. complex plane. 

Definition: The Nyquist diagram of HeQ is the locus of H(jw) 

for .I 

Lemma 1: Let H be an operator in Q and let c and r ̂  0 be 

constants. 

(1) If H(s) satisfies the inequality 

I H (j w) - c I <_ r [or all WL(- "/") , 
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then H is incrementally interior conic with center 

parameter c and radius parameter r. 

(2) If H(s) satisfies the inequality 

iH(jûJ) - c I 2 ? for all coe(-'»,'») 

and if the Nyquist diagram of H does not encircle 

the point (c,0), then H is incrementally exterior 

conic with center parameter c and radius parameter 

r. 

(3) If Re{H(ju))} 0 for all coeC-","), then H is incrementally 

positive.1 

Due to the linearity of relations in Q, the incremental and non-

incremental sector conditions become equivalent. Hence, Lemma 1 is 

true in the nonincremental case also. 

Now sector conditions are given an interpretation in the output 

versus input plane through the following definition of instantaneous 

sector conditions. 

Definition: Assume H is a relation on L2g[0,m). Each of the 

following must be true for all xeDo(H), all HxeRa(H), and all tel. 

(1) H is instantaneously inside the sector {a,b} if 

Hx(t) = 0 whenever x(t) = 0 and if a <_ " for 

x(t) ̂  0. 



www.manaraa.com

29 

(2) H is instantaneously outside the sector {a,b} if 

a < b and either < a or > b for x(t) i> 0. 
— x(t) — x(t) — 

(3) H is instantaneously positive if x(t)Hx(t) _> 0»I 

A graphical representation of the above conditions is provided 

by Fig. 4. It is easily seen that if the point (x(t), Hx(t)) always 

lies in the appropriate shaded region of the plane then the appropriate 

instantaneous sector condition is satisfied. 

Of particular interest here is the memoryless nonlinearity defined 

below. 

Hx 

X 

(c) 

Hx(t) 

a 

(b) (a) 

Fig. 4. Interpretation of sector conditions in output 
versus input plane. 

(a) Inside {a,b}. 

(b) Outside {a,b}. 

(c) Positive. 
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Definition; A relation H on is memoryless if there exists a 

real-valued function N such that the equation Hx(t) = N[x(t)] is 

always satisfied.| 

If N is a function of t also, then a time-varying nonlinearity 

results. Further, a hysterisis nonlinearity can be thought of as 

corresponding to a multiple-valued N. The above nonlinearities lend 

themselves particularly well to analysis in terms of instantaneous 

sector conditions. 

The following lemma establishes the usefulness of the instanta­

neous conditions. 

Lemma 2: If the relation H on is instantaneously inside 

(outside) the sector {a,b}, then H is inside (outside) the sector {a,b}. 

Also, an instantaneously positive relation is positive. Further, the 

converse of the above is true for a memoryless relation.| 

Incremental counterparts to the instantaneous sector conditions 

are provided by the following definition. 

Definition: Assume H is a relation on L^gCO,*). Each of the 

following statements must be true for all x,yeDo(H), all Hx,HyeRa(H), 

and all teT. 

(1) H is instantaneously incrementally inside the 

sector {a,b} if Hx(t) = Hy(t) whenever x(t) = y(t) 

and if a < "x(t)-y(t)^ - ̂ f y(t)• 



www.manaraa.com

31 

(2) H is instantaneously incrementally outside the sector 

{a,b} if a <_ b and either 
Hx(t)-Hy(t) 
x(t)-y(t) 

< a or 
Hx(t)-Hv(t) 
x(t)-y(t) 

2. b for x(t) f y(t). 

(3) H is instantaneously incrementally positive if 

Cx(t) - y(t)][Hx(t) - Hy(t)] > 0.| 

For a memoryless relation H on Lg^CO,*), Fig. 5 provides an illus­

tration of (1) and (2) above. 

It is easily shown that H is instantaneously incrementally inside 

the sector {a,b} if for each point P of the graph of N the rest of the 

(a) (b) 

Fig. 5. Incremental sector conditions in output versus 
input plane. 

(a) Incrementally inside {a,b}. 

(b) Incrementally outside {a,b}. 
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graph lies in the shaded region of the figure. Clearly if N is differ­

ent iable this is equivalent to requiring a _< ^ b for all x. 

Similarly to the above, H is instantaneously incrementally outside the 

sector {a,b} if for each point P of the graph of N the rest of the graph 

lies in the shaded region of the figure. Finally H is instantaneously 

incrementally positive if N is a nondecreasing function. 

The following lemma is the incremental counterpart of Lemma 2. 

Lemma 3: If all conditions of Lemma 2 are replaced by their 

incremental counterparts, then the lemma remains true.| 

The interpretations of sector conditions presented here result in 

a frequency-domain stability condition for a single-loop having an open 

loop composed of a linear relation in Q and a time-varying nonlinearity. 

By using Lemmas 1 and 2 in conjunction with Theorem 5, it is easily 

seen that essentially the same result is obtained as cited earlier due 

to Sandberg for the n = 1 case. In [16] Zames utilizes this result 

with a certain transformation to obtain the familiar Papov stability 

conditions. Further, these results can be extended to L^-stability 

[14]. 
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CHAPTER 4: MAIN RESULTS 

New stability results obtained in a functional analysis setting are 

presented here. Specifically, conditions sufficient to guarantee 

boundedness and continuity of a multiple-loop nonlinear time-varying 

system are derived. First a precise mathematical model of a multiple-

loop system is given in the form of a particular interconnection of 

relations. Then a boundedness theorem is presented which involves the 

interconnection structure and the gains of the relations interconnected. 

Next a particular transformation of a multiple-loop system is discussed. 

This leads to a generalization of boundedness results by allowing gain 

conditions to be replaced by sector conditions. Then a set of conditions 

are given which guarantee boundedness of a single-loop system. A system 

satisfying these conditions is referred to as having a margin of bound­

edness 6. It is found these conditions are useful for the analysis of 

multiple-loop systems. This chapter is concluded by presentation of 

continuity results obtained through application of boundedness results 

to a special system. 

System Configuration 

A portion of the block diagram of a multiple-loop system is shown 

in Fig. 6. The purpose of this figure is to indicate a multiple-loop 

system is an interconnection of relations each having an input composed 

of a general system input a^x plus a fixed bias plus a weighted sum 

of outputs of other relations. 
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im 

^i* ̂  *i 

Fig. 6. Multiple-loop system. 

In mathematical terms the model of a multiple-loop system is 

provided by the set of m simultaneous functional equations 

m 
e, = a.x + w. + Z b,.y. for i 
il i j=i i] j 

y. = H.e. for i 
' 1 11 

= 1,2, ,m (2a) 

= 1.2, ,m (2b) 

where the following are true; 

Each H. is a relation on X . 
1 e 

xeX^ is the system input. 
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Each a^ is a constant. 

Each is a fixed bias in X. 

Each b^j is a constant. 

Each e^eXg is a system output. 

Each y^GX^ is a system output. 

It should be noted that just as in the case of a single-loop system the 

bias terms can be used to account for initial condition responses. 

For purposes of stability investigations attention is focused on 

relations which connect the input x with each of the outputs. E^ 

connects x with e^^, and connects x with y^^. More precisely for 

i = 1,2,...,m 

E^ = {(x,e^) : (x,e^)eX^'<X^ and there exist e^ for all j f i, 

Vj for all j, and H^e^ for all j all in X^ such 

that equations (2) are satisfied} 

and 

F^ a {(x,y^):(x,y^)eX^ x X^ and there exist e^ for all j, 

y^ for all j ̂  i, and for all j all in such 

that equations (2) are satisfied}. 



www.manaraa.com

36 

A Gain Result 

The following theorem gives sufficient conditions for boundedness 

of a multiple-loop system. 

Theorem 7 ; All relations and associated with the multiple-

loop system (2) are bounded if g(H^) < ~ for all i and the successive 

principal minors of the matrix 

I - C|b^j|g(Hj)] 

are all positive. 

Remark 1; Gain enters into the proof of Theorem 7 only through 

the inequality |l(H^x)^|| _< g(H^)||x^||. Hence, it might as well be 

assumed that each is conic with center parameter zero and radius 

parameter r^. If X is an inner product space, this is equivalent to 

being inside the sector {-r^^r^}. In this situation the boundedness 

condition would be the successive principle minors of I - [|b^j|rj] 

are all positive.] 

Proof of Theorem 7: It is sufficient to show that each relation 

is bounded since this Implies each relation is also bounded. 

This follows from 

h\\le = I i Vi' L - ! I=il L 

and the condition that g(H^) < «>. Clearly F^ is bounded if E^ is 

bounded. 
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Now boundedness of is established for each i. Let x, e^, y^, 

and H^e^ be functions in for each i which satisfy equations (2). 

Truncate equations (2a) at teT giving for each i 

m 

' W * "it + .1  ̂

Noting all truncated functions lie in X, it is found that for each i 

< |aj llxjl + + £ |by | ||y ||. 
]-i 

From the definition of gain, 

m 
1 lentil 1 |aj I lxj.1 1 + I |w\^|| + |g(H^) j i-

Now translate this into matrix notation by using the following defini­

tions : 

®t '®lt' '' ' '®2tl '' ' ' '®mt' 

h = [|a^|, iagi 

«t = I|w2t" llwmtll]^' 

Then for all teT 

Gf 1 h I Ixfl I + Wf, + [|bij |g<Kj)]e^-

This gives 

<. h 1 1x^1 1 + w^. 
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nonnegative, then for all teT 

1-1 

Now clearly if (l - [|b^j|g(Hj)]} exists and has all of its elements 

< {I - {h||xj I + w^}. 

It is shown in Appendix B that the hypotheses of the theorem are 

sufficient to guarantee this. It follows that there exist constants 

f. > 0 and k.. >0 such that for each i and for all teT 
1 — 1] — 

m 
lUitll IfJUJI + Î kyllw ||. 

1—1 j = 

Now assume x belongs to a bounded subset of X^. Since each w^&X 

and since ||x^||, and ||Wj^|| are all nondecreasing functions 

of t, letting t ->• ® for each i implies 

m 
-il I <• k| I + ||Wj||. 

Since the w^ are fixed and since there exists a constant D such that 

I|x|I < D, it is clear that each relation is bounded.| 

A system composed of a single loop of m relations in cascade is a 

special case of a multiple-loop system. Theorem 7 provides interesting 

boundedness conditions for such a system. The B matrix is founded to 

be of the form 
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B = 

0 

0 
21 

0 b 
32 

0 

0 0 

0 0 

Im 

0 0 

From this it follows that 

b . 0 
m,m-l 

I - ClbjjlgfHj)] = 

|b2i|g(H^) 1 

0 "1^2218(^2) . . . . 

0 -|bi^|g(H/ 

0 0 

0 0 

~'^m,m-l'®^\-l^ ^ 

It is easily found the first m-1 successive principal minors of the 

above matrix are each unity. The boundedness condition which comes 

from the last successive principal minor is 

l^ïmlB(Hi)|b2ilg(H2)|b22lg(H2) l\,m-l'®^V 

Hence, it is found even for a single loop of several relations that an 

open loop gain product less than unity implies boundedness. Certainly 

Theorem 3 of Chapter 3 is a special case of the above. 

It is worth-while to note from the proof of Theorem 7 that specific 

bounds on system outputs can be found in terms of a bound on the system 

input X. Hence, if quantitative information is desired the theory is 

capable of providing it. 
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For a system found to be bounded from Theorem 7, it is seen the 

system remaining after removal of any relation is also bounded. To 

show this assume the hypotheses of Theorem 7 are satisfied. From 

Theorem 11, stated in Appendix C, it is implied that all principal 

minors of the matrix I - [|b^j|g(Hj)] are positive. Now removal of 

the i^^ relation is equivalent to deletion of the i^^ row and column of 

this matrix. But this leaves a matrix which has all principal minors 

positive. Hence, the system with the i^^ relation removed is also 

bounded by Theorem 7. 

In certain situations it is desired that stability be retained 

even if part of the system is disconnected. For such situations 

Theorem 7 is particularly well adapted. However, it would obviously 

be useless to try and use this theorem directly in the design of feed­

back compensation. 

Transforming the System 

A transformation of a multiple-loop system is discussed here which 

allows Theorem 7 to find much wider application than at first appears 

possible. From Remark 1 it is seen if X is an inner product space that 

boundedness conditions obtained from Theorem 7 require each H^ to be 

inside a symmetric sector {-r^, r^}. Through a transformation a bounded­

ness theorem can be derived having hypotheses which require each H^ 

either to be inside or outside a particular sector. Clearly the latter 

boundedness results encompass a wider variety of situations. 
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The basic approach employed here is to develop a transformed 

system of the same form as (2) having a set of solutions which contains 

the set of solutions of (2). Then boundedness of the transformed 

system implies boundedness of system (2). It is then found if an 

appropriate sector condition is satisfied by each that tlie condi­

tions of Theorem 7 are satisfied for the transformed system. These 

sector conditions then guarantee boundedness of the set of equations 

( 2 ) .  

Now equations (2a) are placed in a matrix format by making the 

following definitions; 

e = [e^, e^, ej^, 

r ,T 
a ' ̂2 ' • • • • > ' 

,T 
w ^2; ••••J ' 

y = [y^, yg, ••••. yj^, 

B = [b^j]. 

This results in the following equations: 

e = ax + w + By, (2a) 

y. = H.e. for i = 1, 2, m. (2b) 
1 XI 

Now the equations of a multiple-loop system referred to as the 

transformed system are given. First let A and C be disjoint subsets 

of the real line such that A U C = (1, 2 m}. Then for eact 



www.manaraa.com

42 

icA UC pick constants and such that d^=0 if i/A and = 0 if 

i^C. Next define the relation by 

H. + à . I  if ieA 
H.' = / ^ 

^ ' (HU'l + if ieC 

Now assume the inverse of the matrix I + BLdiagd^] exists and make the 

following definitions: 

a' = (I + B[diag d^]) ^a, 

w' = (I + B[diag d^]) ̂ w, 

B' = (I + BCdiag d^])~^(B + [diag c^]), 

e' = Le^', e^', e^'/, 

y' = Ly^', y/ 

The equations of the transformed system corresponding to the system 

modeled by equations (2) are then given by the following: 

e' = a'x + w' + B*y*> (3a) 

y^' = H^'e^' for i = 1, 2, m. (3b) 

Clearly these equations are of the same form as equations (2). 

Now assume x, e., y., and H.e. are functions in X for each i 
1 •'i 1 1 e 

such tliat equations (2) are satisfied. It is shown now that this 

solution for equations (2) can be used to find a solution for equations 

(3). Imagine placing a feedback of -c^I or a feed-forward of d^I 
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around each relation in Fig. 6. This is illustrated in Fig. 7. By-

using standard block diagram manipulations to adjust the interconnection, 

essentially the same system is retained. 

"1 
e.. I _j_ e 

H. 

L 
(a) 

~1 
y/ e.' 

^i y i_±  
1+ 

L J 
(b) 

Fig. 7. Feedback and feed-forward around relations of Fig. 6. 

(a) ieC. 

(b) ieA. 

Now the primed inputs and outputs of the single-loop systems of Fig. 7 

are shown to satisfy equations (3). Specifically, these primed inputs 

and outputs are defined by the equations e.' = e. + c%y^ and y^' = 

y. + d.e. for each i. In a matrix format this becomes 
•'i i i 

e'" 

II 

[diag c^] 

[diag d^] 

Multiplication by the inverse matrix gives both e and y in terms of 

e ' and y ' through the equation 

-[diag c^] 

-[diag d^] 
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Substituting for e and y in equation (2a) gives the equation 

e' - Cdiag c_]y' = ax + w + B(-Cdiag d^]e' + y'). 

After rearranging this equation, it is found 

(I + B[diag d^])e' = ax + w + (B + [diag c^])y' . 

Multiplication by (I + B[diag d^]) ̂  gives 

e* = a*x + w' + B'y' . 

Hence, (3a) is satisfied. 

Now assume ieA. Then y^' = y^ + d^e^ = H^e^ + d^e^. Thus, there 

exists (H^ + d^I)e^ such that y^' = (H^ + d^I)e^. Since + d^I 

and e^' = e^, there exists H^'e^' such that y^' = For this 

situation then (3b) is satisfied. 

Now assume ieC. Then y^ = H^e^ = H^(e^' - c^y^). This implies 

there exists ^y^ such that ^y^ ~ ®i* ~ '^i^i* This means there 

exists (H^ ̂  + c^I)y^ such that (H^ ̂  + c^Dy^ = e^'. But this in 

turn implies there exists (H^ ̂  + c^I) ̂ e^' such that (H^ ̂  + c^I) ̂ e^' = 

y^. Since = (H^ ̂  + c^I) ̂  and y^' = y^, it is then known there 

exists H^'e^' such that y^' = H^'e^'. Thus, (3b) is also satisfied in 

this situation. 

Hence, it has been shown that for each solution of equations (2) 

there is a corresponding solution of equations (3). In this sense the 

set of solutions of (2) is a subset of the set of solutions of (3). 

From this it is deduced that boundedness of the multiple-loop trans­

formed system (3) implies boundedness of the multiple-loop system (2). 
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Using the obvious definitions for the relations ' and ' associated 

with the multiple-loop system (3), assume each E^* and F^' is bounded. 

Let X belong to a bounded subset of X^, and let x, e^, y^, and H^e^ be 

functions in for each i which satisfy equations (2). There exists a 

solution of equations (3) with e^' = e^ + c^y^ and y^' = y^ + d^e^. 

This leads to the equations e^ = e^' - c^y^' and y^ = y^' - d^e^'. But 

e^' and y^' belong to bounded subsets of for each i. Hence, 

From this it is clear each E^ and associated with the multiple-loop 

system (2) is bounded. 

The following example illustrates the transformation through the 

use of block diagrams. 

Example 1: A multiple-loop system comprised of three relations is 

shown in Fig. 8. The transformed system is represented in Fig. 9 where 

the primed blocks can be envisioned in terms of the single-loop systems 

shown. 

The constants c^, d^, and d^ are set equal to zero. The B matrix 

Is given by 

He^ll < I 1^1'I I + |c^l llyj'll and ||y^|| <. ||yj'|| + |d^| ||e^'||. 

0 b 
12 

b 
13 

B = b 
21 

0 b 
23 

b 
31 

b 
32 

0 

This results in 
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Fig. 8. Multiple-loop system of Example 1. 
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H, 

c,I 

A-

H, 

I—TZT 
03—' H, 

% 

d„I •' 
H, 

^3^ + *3 

b3i b3i 

^32 ^32 

^21 " ̂23*^3^31 

- b^^d^b,,. 

(*1-^1343*3)* + ^"r^l3S''3^ 

''l"^13^3^31 

b,„-b,«dLbr 

iJ, iJ, 

9. Transformed system for Example 1. 



www.manaraa.com

48 

1 0 
"^13^3 

(I + B[diag d^]) ̂  = 0 1 ~^23'^3 

0 0 1 

Hence, 

a = 

1 

0 

0 

° "^13^3 

^ ~^23^3 

0 1 

*l"^13^3^3 

^2"^23*^3^3 

a. 

and 

B • = 

"1-^13^3 W3 

w ' = 
"2"^23'^3 W3 

-
^3 

-

9 

1 0 
"12 ^13 

0 
^ "^23^3 ^21 ^2 ^23 

0 0 1 
^31 ^32 

0 

" ̂13^3^31 

^21 " ̂23^3^31 

31 

^12 ~ 13 

^2 ~ ̂ 23^3^32 ^23 

32 

Also, of course, * = (H^ ̂  + c^I) ' = (H^ ̂  + Cgl) and 

Hg' = Kg + d^I. An examination of the two figures shows one can be 

obtained from the other by standard block diagram manipulations. 
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A Sector Result 

For purposes of convenience slightly different notation is used 

here when specifying the nature of a conic relation. The incremental 

counterpart of this notation is obvious. 

Definition: A relation H is conic with constants (a,b) if for 

a _< b the relation is inside {a,b} and for a > b the relation is out­

side {b,a}.I 

The following theorem guarantees boundedness of a multiple-loop 

system (2) if certain sector conditions are satisfied. Note X is 

assumed to be an inner product space. 

Theorem 8: Suppose for each i that is conic with constants 

^^i'^i^ where # b^. Let A and C be disjoint subsets of the real 

line such that All C = {1,2,....,m}. Define the constants d^ and c^ by 

and 

"=1 

\ 

b. + a. 
X X 

0 if ieA 

Let the matrix B' be specified by 

B' = [b^j'] = (I + B[diag d^]) ^(B + [diag c^]) 
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where it is assumed the indicated inverse exists. Further, define 

> 0 by 

^i = 

J (b^ - a^) if ieA 

2b a 

Now if the successive principal minors of the matrix 

I - [|bij'lnj] 

are all positive then all relations and associated with the 

multiple-loop system (2) are bounded.| 

Remark 2: The limiting cases for ieC of b^ -»• <» or a^ can 

be rigorously dealt with as explained in Appendix D. For b^ + " the 

theorem remains true if the hypotheses are changed to read - a^I 

is positive and the definitions of c and ri are changed to c. = -
11 1 2, 

and = -2a^. Similarly for a^ -+ the hypotheses are changed to 

-Hi + b^I is positive and the definitions of c^ and become c^ = -

and n i = Zb^.| 

Proof of Theorem 8: Consider the transformed system (3) associated 

with system (2) for the constants d^ and c^ defined in Theorem 8. It is 

shown in Appendix C that the relation being conic with constants 

(a^, b^) for each i is sufficient to guarantee * is inside 

The equations of the transformed system are of the same form as equations 

(2). Also, from the definition of w', it is seen that since w^eX for 
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all i that w^'eX for all i. Hence, applying Theorem 7, the transformed 

system is found to be bounded since the successive principal minors of 

I - [|b^j'|nj] are all positive. But this implies system (2) is 

bounded.| 

The restriction in the theorem that > 0 imposes interesting 

constraints on a^ and b^. For ieA it is implied that a^ < b^. If ieC, 

then either a^ < 0 or b^ > 0. Within this constraint all situations 

are acceptable except for b^^ ̂  a^ > 0 and a^ _< b^ ̂  0. This is illus­

trated in Fig. 10 for the special case of instantaneous sector condi­

tions discussed in Chapter 3. 

An illustration of Theorem 8 is provided by considering a multiple-

loop system formed from the interconnection of linear time-invariant 

operators in Q with time-varying nonlinearities. If boundedness condi­

tions are available from Theorem 8, they take the form of conicity re­

quirements on the operators in Q and the time-varying nonlinearities. 

Under these conicity conditions inputs from a bounded subset of the Lg 

space correspond to outputs in bounded subsets of the Lg space. Assume 

the i^^ time-varying nonlinearity is a relation on which 

satisfies the equation H^x(t) = N^[x(t),t] where is a real-valued 

function. Then, assuming ieA, the conicity requirement that be 

conic with constants (a^,b^) is satisfied if the following instantaneous 

conditions are true: 

N (x,t) 
a^ <. <. b^ for all x f 0 and all te[0,"), 

N^(0,t) = 0 for all te[0,"). 
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H.x(t). 

x(t) 

(a) 

x(t) 

(b) 

x(t) 

(d) 

x(t) 

(c) 

Fig. 10. Instantaneous form of conditions imposed by Theorem 8. 

(a) Typical if ieA. (c) Never possible if ieC. 

(b) Never possible if ieC. (d) Never possible for any i. 

This follows from Lemma 2 of Chapter 3. The conicity requirements on 

the operators in Q are given an interpretation in the complex plane by 

Lemma 1 of Chapter 3. The i*"^ linear time-invariant operator is conic 

with constants (a^,b^) if one of the following is true: 

(1) For a^^ < b^ the Nyquist diagram of the operator 

lies inside the circle in the complex plane which 
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intersects the real axis at the points (a^,0) and 

(b^,0). 

(2) For a^ > the Nyquist diagram lies outside the 

circle in the complex plane which intersects the 

real axis at the points (bu,0) and (a^,0). Further, 

the Nyquist diagram does not encircle the point 

(|"(bi + a^) ,0) . 

The above stability results and those of Theorem 1 due to Sandberg 

apply to the same general type of system. However, the problem formula­

tion is different since the system dealt with in Theorem 1 is cast in 

the form of a single loop. Despite this, the only significant differ­

ence between the results is in the conditions placed on the linear time-

invariant parts. In Theorem 1 a single condition is given involving 

the supremum over w of the positive square root of the maximum eigenvalue 

of a matrix which is a function of w. Using Theorem 8 results in 

several conditions involving Nyquist diagrams. This illustrates the 

fact that a single-loop approach as compared with a multiple-loop 

approach results in fewer stability conditions which are in general 

more difficult to verify. 

As for Theorem 7, satisfaction of the conditions of Theorem 8 

allows specific bounds on system outputs to be found in terms of a 

bound on the input. This is seen by assuming the conditions of 

Theorem 8 are satisfied and referring to the discussion of the trans­

formation employed in the proof of the theorem. For each solution 

of (2) there exists a corresponding primed solution of the appropriate 
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system (3). Assume xeX. Then it is known ||e^|| ||e^'|| + 

|c_J lly^'ll* Since is inside it is found lly^'|| = 

1 iHi'^i'll 1 n^l |e^' 1 I • This leads to ||eu|| £ (1 + |c^| n^) | je^' [ | . 

Now the conditions of Theorem 7 are satisfied for system (3). Thus, 

from the latter portion of the proof of Theorem 7, it is seen con­

stants f.' • 0 and k..' > 0 can be caJculated such that 
i - ij -

m 

Similarly, it is found a bound on ||y^| j can be found in terms of j |x||. 

The theory is found to be capable of providing a feeling for the 

"degree of stability" possessed by a system. Assuming first that the 

conditions of Theorem 8 are satisfied, it is clear that making re­

strictions on system parameters more stringent results in tighter 

bounds on system responses. In this sense the margin by which bounded-

ness conditions are satisfied is a measure of "how stable" a system is. 

A Margin of Boundedness 6 

The following defines a condition on a single-loop system which is 

later found to be helpful in the application of Theorem 8 to multiple-

loop systems. 

Definition: The single-loop system (1) possessing open-loop rela­

tions and H g has a margin of boundedness 6 if one of the following 

is true for some 0 < (S < 1: 
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Case la; is conic with constants (a,b) where b < a < 0 

and -Hg is inside the sector 

Case lb: is conic with constants (a,b) where a < 0 and 

b > 0. Further, -Hg is inside the sector 

1 

Case 2; - al is positive where a < 0, and is inside 

the sector {- 5(^), - ̂  + <5(^)}.l 

The above definition is given an instantaneous interpretation by 

Fig. 11 for relations on If each of the points (x(t), H^x(t)) 

and (x(t), - Hgx(t)) always lie in the appropriate shaded regions in 

the figure, then the single-loop system has a margin of boundedness 6. 

Actually, from the figure, it is seen that Case 2 can be obtained from 

Case la in the limit as b ̂  or from Case lb in the limit as b 

The motivation for the above definition is found to be that a 

single-loop system having a margin of boundedness 6 satisfies the 

conditions of Theorem 8 within that margin. This is shown by noting 

for Cases la and lb that is conic with constants (a^^b^) and is 

conic with constants (ag.bg) where a^ = a, = b, ̂ 2 ~ ̂  ~ ^^2Ea^' and 

bg = ̂  + . The conicity of is inferred from the conicity of 

-Hg by property (2) in Appendix D. In Case 2, - a^^I is positive and 

is conic with constants where a^ = a, ̂ 2 ~ ̂  ~ » and 
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H,x(t) 
b-a 
2ba 

x(t) 

(a) 

Fig. 11. Instantaneous conditions for a margin of boundedness 6. 

(a) Case la: b < a < 0. (b) Case lb: b > 0 and 

a < 0. (c) Case 2: a < 0. 
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bg = 6(—) . Now it is shown for each case that the conditions of 

Theorem 8 and Remark 2 are satisfied. Let A = {2} and C = {!}. The 

matrix B is found to be 

B = 
0 

1 

1 

0 

Then B' is easily found to be 

B' = 
=1-42 

Now for Cases la and lb 

=1 - ̂ 2 = 
1 

Further, for Case 2 

Ci - dj 2^ + fCbj+aj) ir + ° "• 

Hence, B' = B indicating the feedback in the transformation is canceled 

by the feed-forward. Now it is found that 

I - = 
-n. 

-n. 

so the single-loop system is bounded if 

1 - > p. 

For Cases la and lb 
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^)[|(b,-a2)] = - (^)[1 .!_« 

Further, for Case 2 

Therefore, In each case 

1 - = 6 > 0 

Hence, the boundedness condition is satisfied within a margin 6 implying 

the single-loop system is bounded. 

The problem which arises concerning use of Theorem 7 for the design 

of feedback compensation does not occur for Theorem 8. This is easily 

seen by considering the single-loop system with a margin of boundedness 

5. Assume the conditions of Case la are satisfied. The system is then 

bounded by Theorem 8, but removal of the relation does not leave a 

system which is required to have a finite gain. 

It can be shown by using the idea of a margin of boundedness 6 

that new results presented here specialize to results presented by Zames 

[15]. Specifically, it is found that Theorem 5 of Chapter 3 is obtained 

by applying Theorem 8 of this chapter to a single-loop system. Suppose 

the conditions of Theorem 5 are satisfied for some y > 0. The case 

Y = 0 need not be considered since this is shown by Zames to be a special 

case of Y > 0. Now compare each case of Theorem 5 with the corresponding 

case in the definition of a margin of boundedness 6, Clearly a 6 can be 

found so the system being examined has a margin of boundedness 6. But 
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this implies the system is bounded from Theorem 8. Hence, Theorem 8 

can be utilized to prove Theorem 5. 

Now two examples are given which indicate how the interconnection 

structure influences the final form of the stability conditions. In 

order that this influence might be most easily discerned. Theorem 7 is 

utilized rather than the more complicated Theorem 8. Then it is dis­

cussed how the form of the interconnection can be used as a guide for 

the application of Theorem 8. In this connection it is found the 

idea of a margin of boundedness 6 is quite useful. 

Example 2: Consider the multiple-loop system represented by the 

block diagram of Fig. 12 where H^, and are all relation on 

of finite gain. 

Fig. 12. Block diagram for Example 2. 

First the B matrix is found to be 
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This gives 

1 -gCHg) 

I - [|bjj|g(Hj)] = -g(H^) 1 

-g(Hj_) 0 

-gCH]) 

0 

1 

Then calculating the successive principal minors leads to the bounded-

ness conditions: 

Since gains are positive, the first condition can be eliminated because 

it is implied by the second. The second condition also implies 

From this it is clear that if the multiple-loop system of Fig. 12 is 

bounded from Theorem 7, then each subloop of this system has an open-

loop gain less than unity. Hence, from Theorem 7 each subloop is 

bounded. However, the converse of this is not true unless each subloop 

satisfies the conditions of Theorem 7 within a certain margin. Define 

6^ and 6^ by 

1 - gCH^igCHg) > 0, 

1 - g(H^)g(H2) - gCH^igCHj) > 0. 

1 - g(Hjg(H3) > p. 

1 - g(H^)g(H2) = 6^ 

and 

1 - g(%)g(H3) = gg. 

Then if 6^^ + 62 > 1 the multiple-loop system is bounded. | 
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Example 3: The system examined here is shown in Fig. 13 where 

Hg, and are each relations on of finite gain. The constants 

and kg are positive. The B matrix is easily found to be 

B = 

0 

1 

1 

-1 

0 

-1 

k] 

0 

Then it is seen that 

I - [|bij|g(Hj)] = 

-gCHg) 

1 

-g(H^) -kggCKg) 

-gCH]) 

-kigCHs) 

Calculation of the successive principal minors of the above matrix 

gives the boundedness conditions: 

1 - g(H^)g(H2) > 0, 

1 - g(H^)g(H2) - gCH^jgfHg) - k^kggîHgJgîHg) - kj^g(H^)g(fi2)g("3) 

- k2g(H^)g(H2)g(H3) > 0. 

The first condition can be eliminated since it is implied by the second. 

Actually the second condition implies each of the following: 

1 - g(H^)g(H2) > 0, 

1 - g(H^)g(H3) > 0, 

1 - k^k2g(H3)g(H2) > 0, 

(4a) 

(4b) 

(4c) 
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Fig. 13. Block diagram for Example 3. 

1 - k^g(H^)g(H2)g(H3) > 0, (4d) 

1 - k2g(H^)g(H2)g(H3) > 0. (4e) 

Hence, it is clear that if the multiple-loop system of Fig. 13 is 

bounded from Theorem 7, then each subloop of the system has open-loop 

gain less than unity. Thus, from Theorem 7 each subloop is bounded. 

Again the converse of this is not true unless the subloops each satisfy 

the conditions of Theorem 7 within a certain margin. If the right hand 

side of each inequality in (4) is replaced with a positive number such 

that the sum of these numbers is greater than four, then the multiple-

loop system of Fig. 13 is bounded.| 

The purpose of the above two examples is to indicate, that as far 

as Theorem 7 is concerned, boundedness conditions for a multiple-loop 
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system can often be stated in terms of margins by which subloops 

satisfy boundedness conditions. This information can be used to guide 

application of Theorem 8 since this theorem actually involves applica­

tion of Theorem 7 to a transformed system. It can often be seen how 

boundedness conditions on subloops of the transformed system reflect 

back into the original system. Here the condition that a subloop of 

the original system has a margin of boundedness 6 becomes useful. 

This is due to the fact that satisfaction of this condition Implies a 

corresponding subloop of the transformed system satisfies a boundedness 

condition within a margin 6. Boundedness conditions for the original 

system then involve 6. This allows an organized approach and often 

reveals tradeoffs in conditions. 

Continuity 

By devising a system relating changes in inputs to changes in 

outputs, continuity results can be obtained almost directly from bounded­

ness results. This approach produces the following theorem. 

Theorem 9; If the conditions of Theorem 8 are replaced by their 

incremental counterparts, then all relations and associated with 

the multiple-loop system (2) are continuous.] 

Remark 3; The limiting cases of b^ ̂  " and a^ -+ -«> for ieC are 

handled in the same manner as for Theorem 8 but by requiring incremental 

conditions to be satisfied.| 
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Proof: First a system relating changes in inputs to changes in 

outputs is presented. Define the relation on by 

= {(e,y):there exist w and v in Do(H^) such that 

e = (w-v) and there exists H^w and H^v such that 

y = H^w - H^v}. 

G^ then relates changes in the input of to changes in its output. 

Consider the following system: 

m 
ê. = a.x + E b y for i = 1, 2 (5a) 
1 1 IJ J 

y^ = for i = 1, 2, ..., m. (5b) 

Let x^, e^^, y^^, and H^e^^ be functions in satisfying (2) for 

each i. Further, let x^, e^g, y^2» ^i®i2 functions in X^ also 

satisfying (2) for each i. Now for x = x^ - Xg, = e^^^ - e^g, and 

= y^^ - y^2 there exists G^e^ in X^ such that equations (5) are 

satisfied. This is easily seen by subtracting the equations 

corresponding to the input x^ from those corresponding to the input 

x^. The w^ are eliminated since they are fixed regardless of the 

input. Hence, equations (5) relate changes in the input x to changes 

in the outputs and y^ through the relations and F^. 

Assume the conditions of Theorem 9 are satisfied. is incre­

mentally conic with constants (a^,b^). This implies G^ is conic with 

constants (a^,b^). To see this let eeDo(G^), G^eeRa(G^), and teT. 

Then by the definition of G^ there exists a w and v in Do(H^) such 
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H.w - H.v. 
X 1 

<(H^w-H^v)^ - a^(w-v)j., v) ̂ - b^(w-v)^.>. 

Hence, incremental conicity requirements on imply corresponding 

conicity requirements on G^. 

Applying Theorem 8 to system (5), it is seen that and are 

bounded for all i. This means bounded changes in the input produce 

only bounded changes in the output. This is close to what is desired. 

To actually obtain continuity, the proofs of Theorems 8 and 7 must be 

examined. The proof of Theorem 8 involves showning an appropriate 

transformed system (3) is bounded from Theorem 7. Denote inputs and 

outputs for the transformed system corresponding to (5) by ê^' and 

y^'. Since the in equations (5) are zero, the equation for w' in 

equations (3) indicates ' in the transformed system is zero. Hence, 

from the last portion of the proof of Theorem 7, it is seen there 

exists f^ ̂  0 such that for each i 

llê^'ll If^lUII and | |y^'| I 1 1*1 I 

for any solution of the transformed system with xeX. 

It was shown when discussing the transformation that for each 

solution of (5) there is a solution of the transformed system such 

that for each i 

that e = w - V and there exists H^w and H^v such that G^e 

Therefore, 

<(G e) - a e (G e) - b e > = 
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\ ' Vi ?! = ?! - >^1®! • 

Thus, for each solution of (5) with X E X it is seen 

I |ê^| I < (f+ Ic^ln^f^) I |x| I and | |y^| | < (n^f^ + | 1*1 |-

Now returning to the beginning of the proof to the solutions 

corresponding to inputs and x^, it is seen that for x^ - XgcX. 

Now consider a multiple-loop system formed from the inteifcormec-

tion of linear time-invariant operators in Q with memoryless non-

linearities. If Theorem 9 yields continuity conditions, they take the 

form of incremental conicity requirements. Then satisfaction of these 

requirements implies inputs arbitrarily close to each other in the Lg 

space correspond to outputs arbitrarily close to each other in the 

space, Boundedness conditions were discussed earlier for a similar 

system in connection with Theorem 8. It is found the incremental 

conicity requirements on the operators in Q have the same interpretation 

here as earlier. However, the requirements on the nonlinearities are 

and 

Then Hx^-x-H < Pick e > p. Let 6 Then {(x^-xg!! < 6^ implies 

<  E .  Hence, 

is continuous for each i. Similarly all are continuous.} 
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interpreted differently. Assume the i^^ memoryless nonlinearity is a 

relation on L^^CO,") which satisfies the equation H^x(t) = N^[x(t)] 

where is a real-valued differentiable function. Then, assuming 

ieA, the requirement that H. be incrementally conic with constants 
^ dN (x) 

^^i'^i^ is satisfied if a^ _< ———^ b^, for all x. This is true by 

Lemma 3 of Chapter 3. 

From the latter portion of the proof of Theorem 9, it is clear 

satisfaction of the hypotheses of the theorem actually implies more 

than continuity. The theory is capable of providing quantitative 

information in the form of specific bounds on deviations in system 

outputs in terms of deviation in the system input. Under initial 

satisfaction of the conditions of Theorem 9, a further tightening of 

restrictions on system parameters clearly results in tighter bounds 

on deviations in outputs. Thus, a similar situation exists as for 

Theorem 8 in that the margin within which conditions of Theorem 9 are 

satisfied can be viewed as a measure of "how stable" a system is. 
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CHAPTER 5: APPLICATIONS 

In this chapter the stability of several systems is investigated 

through the use of Theorems 8 and 9. For each system examined, it is 

found the form the interconnection structure takes is a helpful guide 

for application of the theory. This is reflected by the fact that in 

each instance general stability conditions always require certain 

subloops to have a margin of boundedness 6. 

For each system investigated, boundedness and continuity are 

interpreted in terms of the Lg norm. This is done because analysis 

in terms of this norm allows results to be obtained in the most direct 

manner. This permits the emphasis to be placed on changes in the theory 

required to go from a single-loop to a multiple-loop system. Several 

extensions of the single-loop theory have been made which are interesting 

to examine relative to the multiple-loop theory. For instance, Zames 

[14] presents a theorem for L^-boundedness which is comparable with 

Theorem 8 and has a frequency-domain interpretation for a single-loop 

with a linear part and a nonlinearity. 

Due to the fact that the norm is used exclusively, it must be 

assumed in all cases that all system inputs and outputs are square 

integrable over any finite time-interval. From an engineering viewpoint 

this is a trivial restriction since it is almost always true for any 

physical system of interest. 

Results presented in this chapter are relevant to the Lyapunov 

type of stability as well as the type of stability defined in a func­

tional analysis setting. This seems reasonable from consideration of 



www.manaraa.com

69 

a dynamical system for which a bounded set of inputs leads to a bounded 

set of outputs in the sense of the norm. Roughly speaking,a zero 

input then corresponds to an output which becomes small in the remote 

future regardless of initial conditions. But this is close to the idea 

of asymptotic stability. Willems 1.13j makes this more precise by 

proving that global asymptotic stability in the sense of Lyapunov 

results if the state space is accessible and observable in some 

sense. 

The first system considered here is a particular interconnection 

of three specific linear time-invariant systems with three specific time-

varying nonlinearities. This is followed by examination of a network 

possessing passive components. Finally, a particular nonlinear time-

varying differential equation involving time delay is analyzed. 

lixample I: Consider the multiple-loop system shown in Fig. 14. 

Application of Theorem 8 shows this system is bounded in the sense of 

the norm. 

First a more detailed description of the system illustrated in the 

block diagram is given. Clearly this system is an interconnection of 

three linear time-invariant systems, a time-varying gain, a piecewise 

linear nonlinearity, and a hysterisis nonlinearity. Let h(t) be the 

inverse Laplace transform of block labeled 

represents a system having input u and output v which 

satisfy the integral equation 
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r 
s+4 s+20 

(s+2)(s+4) (s+1)(s+2)(s+5) (s+1)(s+2) 

.53 
.25(l-cost) 

Fig. 14. Multiple-loop system of Example i. 

v(t) = z(t) + f h(t-T)u(T)dT 
0 

for t >_ 0 where z(t) accounts for initial conditions. It is assumed 

z(t) lies in L [0,-). The blocks labeled 7——rr Hiid 
(s+2) (s+4) 

s+4 
(s+1) (s+2) (a+5) CK^rcsent systems modeled by .simi hir integral 

equations having initial condition responses in 1.^1.0,"') . The 
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assumption is made that each block in Fig. 14 has inputs and outputs 

which are square integrable over any finite time-inLerval, 

Now consider any input or output of any block. Ln Fig- 14. liound-

edness implies a bound on the "size" of this input or output can be 

given in terms of a bound on the "size" of the input r. For example, 

consider the output c. Now for each D and each set of initial condi­

tions a C can be calculated so that when a solution exists 

.00 2 

Jq r(t) dt < D 

implies 

/y c(t) dt < C. 

This means, roughly speaking, that inputs which become small rapidly 

enough in the remote future lead to outputs which become small in the 

remote future regardless of initial conditions. 

The following modification of the system in Fig. 14 is shown to 

be continuous by Theorem 9= Imagine replacing each of the nonlinearities 

of the system in Fig. 14 with a slope restricted nonlinearity. Specif­

ically, replace the graphs of the piecewise linear nonlinearity and the 

hysterisis nonlinearity with, respectively, the real-valued differenti-
dN^(x) 

able functions and . Assume the inequalities .53 _< ———£ 1.6 

dN^(x) 
and 0 < ; < .5 are satisfied for all x. 

— dx — 

Now consider any input or output of any block in the modified 

system of Fig. 14, Continuity implies a bound on the "size" of the 
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deviation in this input or output can be found in terms of a bound on 

the "size" of the deviation in the input. Being more specific, consider 

the output c. Let r and r' be two general system inputs for which under 

identical initial conditions the, respective, outputs c and c' exist. Then 

,00 2 
/q [r(t) - r'(t)] dt < " 

a constant K can be calculated which is independent of initial conditions 

and for which 

/q Cc(t) - c'(t)]^dt£K Jq [r(t) - r'(t)]^dt. 

Loosely speaking, this means inputs which become close rapidly enough 

in the remote future lead under identical initial conditions to outputs 

which become close in the remote future. The fact that the system is 

continuous also means the jump phenonenon cannot be displayed. 

General stability results which specialize to those given above 

can be obtained for the multiple-loop system of Fig. 15. These results 

are found from application of Theorems S and 9 and are cast in a fcrm 

which reveal tradeoffs. 

First consider in more detail the system depicted by Fig. 15. 

The blocks labeled H^, and are members of the class of linear 

time-invariant operators Q. Zero-input responses of the systems 

modeled by these operators are accounted for by the functions , z^, 

and z^ which are all assumed to be in L^CO,"). The blocks labeled 

H^, and represent time-varying nonlinearities which are modeled 

by relations on LggCO,*). The constant k is assumed to be nonnegative. 

This multiple-loop system clearly has equations of the form of (2) 
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subloop 1 subloop 2 

Fig. 15. Multiple-loop system. 

where the input r corresponds to x and the w^ functions are linear combi­

nations of z^. 

Use of Theorem 8 yields the following boundedness conditions. Assume 

the single-loop system possessing open-loop relations and has a 

margin of boundedness 6 where is conic with constants (a^,b^). In 

other words, assume subloop 1 has a margin of boundedness 6. This means 
1 b.-a^ 

is conic with constants (a ,b.) and H, is inside ^ —-), 

1 ^i"^i 
+  6 _  ) }  f o r  s o m e  0  <  6  <  1  w h e r e  e i t h e r  b .  <  a ,  <  0  o r  a ,  <  0  

anb b^ > 0. Further, assume is inside is inside 

is inside {0,bg}, and is inside {0,bg} where b^, b^, b^, 

and b^ are all positive. Then the system of Fig. 15 is bounded if 

2b.a 
6(1 - bgbgbg) + kb2(b2 + b^) ^ 
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It is interesting to observe that a necessary condition for satis­

faction of the above inequality is < 1. Further, if this condi­

tion is satisfied a k ̂  0 can always be found for which boundedness is 

guaranteed. This is particularly Interesting since from Theorem 7 the 

condition < 1 guarantees boundedness of subloop 2 comprised of 

relations and H^. Apparantly if subloops 1 and 2 satisfy bound­

edness conditions and the coupling k between them is weak enough, then 

the entire multiple-loop system Is bounded. 

Now the boundedness conditions cited above for the system of Fig. 

15 are employed to show the system of Fig. 14 is bounded. Making a 

comparison of the two figures it is seen the block labeled corres­

ponds with the block labeled (g+2)* the block in Fig. 14 is 

stated above to be modeled by an integral equation having Laplace trans­

form / Since the poles of this transform lie strictly in the 
(s+l)(s+2) 

left half plane, this system belongs to the class of linear operators 

Q. Further, the Initial condition response belongs to [0, ") . Similarly, 

the blocks labeled and correspond, respectively, with the blocks 

labeled (s+2)(s+4) (s+l)(s+2)(s+5)- ^1°=^ labeled Hj 

corresponds with the time-varying gain .25 (1-cost). Finally, the 

blocks labeled and correspond with, respectively, the piecewise 

linear nonlinearity and the hysterisis nonlinearity. Hence, with 

k = -5 it is seen the system of Fig. 14 fits the form of the system 

shown in Fig. 15. Now let H,(s) = , H„(s) = * 
1" ' (s+l)(s+2)' "2^=/ (s+2)(s+4)' 

Hgfs) = (s+1)(s+2)(s+5)' relation satisfy the equation Hgx(t) = 

•25(l-cost)x(t), and the relations and be described by the graphs 
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shown in Fig. 14. From the Nyquist diagrams shown in Fig. 16, it is 

clear from Lemma 1 of Chapter 3 that is outside {-5.33,-.5} and 

both and are inside {-.5,.5}. Further, it is clear from Lemma 2 

of Chapter 3 that is inside {0,.5}, is inside {.53,1.6}, and 

is inside {0,.5}. Now pick 6 = .375. Then for a.^ = -.5, bj^ = -5.33, 

bg = bg = .5, and b^ = b^ = .5 

^^1^1 
6(1 - b^bjbj) + kbjCbj + b^)^ > 0. 

Further, 

and 

1 ^1~^1 - ̂  = '526 

1 ^1~^1 

Hence, the boundedness conditions cited above for the system of Fig. 15 

are satisfied by the system of Fig. 14. 

Now consider the modification discussed above of the system of Fig. 

14. The modified system is still of the form of Fig. 15 but with the 

relations and satisfying, respectively, the equations H^x(t) = 

N^[x(t)j and H^x(t) = NgCxft)]. This system is found to be continuous 

from Theorem 9 by showing the incremental counterparts of the conditions 

satisfied by the system of Fig. 14 are satisfied here. From Lemma 1, 

is incrementally outside {-5.33,-.5} and both and are increment­

ally inside {-.5,.5}. Further, from Lemma 3 of Chapter 3, is incre­

mentally inside {0,.5}, is incrementally inside {.53,1.6} and is 

incrementally inside {0,.5}. Hence, the modified system is continuous. 
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ImH 

-5.33 

ReH. 

ImH ImH 

-.5 ReH 2 
-.5' .4/. 5/ReH 

Fig. 16. Nyquist diagrams for Example I. 

Now the boundednass conditions stated above for the system of Fig. 

15 are verified through the use of Theorem 8. Assume these conditions 

are satisfied. Then each H^ is conic with constants (a^,b^) where 

^4 = - ̂  - 6(2^), b^ = - ̂  + <5(2^), = -b^, a^ = -b,, and 

= 35 = 0. In Theorem 8 select A = {2,3,4,5,6} and C = {1}. Then 
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bg 2b^a^ 

dz = da = 0, ds = - —, and d^ = - y-. Further, = - (y ) , 

bg 
*^2 ~ ̂ 2' "^3 ~ ̂ 3' "^5 ~ T"' '^6 ~ T~' from the block diagram 

of Fig. 15 the B matrix is found to be 

B = 

0 0 -1 -1 0 -1 

k 0 0 0 -1 0 

0 1 0 0 0 0 

1 0 0 0 0 0 

0 0 1 0 0 0 

0 1 0 0 0 0 

It is easily found that 

' 1 0 0 
^4 

0 

0 1 0 0 
s 

0 

0 0 1 0 0 0 
(I+B[diagd^])"l = 

0 0 0 1 0 0 

0 0 0 0 1 0 

_ 0 0 0 0 0 1. • 

From this, B' is calculated to be 

- ^6 -1 -1 0 -1 

k 0 
s 0 -1 0 

0 1 0 0 0 0 
B* = (I+B[diagd^]) L 

(B+[diagc^]) 1 0 0 0 0 0 

0 0 1 0 0 0 

0 1 0 0 0 0 
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Due to the fact that the single-loop system possessing open-loop rela­

tions and -H^ has a margin of boundedness 6, it is easily found the 

element in the upper left hand corner of B' is zero. Also 1 - ~ 6. 

Now further manipulations give 

1 "2^6 -r.3 -"4 0 

-""l 
1 "JS 0 

-"5 
0 

0 1 0 0 0 

-^1 
0 0 1 0 0 

0 0 1 
U)
 0 1 0 

0 -Hz 0 0 0 1 

Calculation of the successive principal minors leads to the following 

five inequalities whose satisfaction guarantees boundedness: 

1  +  >  0 ,  

(1 + rtg'yd^) + - '1^) > 0, 

(1 - (1 + n2n2d^) + - n^) > 0, 

(1 - (1 + - n^) > 0, 

(1 - n^n^)(1 + ZngHgd^) + - n^) > 0. 

Observing that d^ and d^ are negative, it is easily seen the last 

inequality implies all the ones preceding it. Using the expressions 

for the and d^ and noting again 1 - 'IjH^ = iS, the last inequality 

above becomes 
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«<i - bjbjbj) + + V ̂  ' »• 

But this is exactly the condition assumed satisfied at the beginning. 

Hence, boundedness is obtained. 

Example II: Boundedness conditions are given in this example for 

two types of systems which have the same equations in functional form. 

First a network formed from the interconnection of a time-varying non­

linear conductance, a time-varying nonlinear resistance, and two passive 

elements is considered. Then a system is examined which is an inter­

connection of two linear time-invariant systems and two nonlinearities. 

The network to be examined is shown in Fig. 17. The voltages and 

currents labeled e^ are considered to be inputs to the appropriate 

elements while the voltages and currents labeled y^ are considered to 

be outputs. The element labeled has a current input and a voltage 

output while the element has a voltage input and a current output. 

Because of this. H, is referred to as an imoedance element and is 
± - i. 

referred to as an admittance element. These two elements are assumed 

to be passive. This means for each element that if i denotes the current 

through the element and v denotes the voltage drop across the element 

then Jq i(T)v(T)dT 2. 0 for all t ^ 0. The elements labeled and 

are, respectively, a time-varying nonlinear conductance and a time-

varying nonlinear resistance. These elements are characterized by the 

functions and through the equations 

y^Ct) = N^Le^(t),tj 
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Fig. 17. Network for Example II. 

and 

y^(t) = NgCe^Ctj.t]. 

It Is assumed for each element that all Inputs and outputs are square 

integrable over any finite time-interval. Certainly from an engineering 

viewpoint this is a trivial assumption. 

Now Theorem 8 can be utilized to obtain the following results. 

Assume for each time t the graph of each of the functions N, and N^ lies 

within the appropriate shaded region of Fig. 18 for some e > 0 and 

a^ > 0 where bg and b^ are arbitrarily large. Being more precise, 

assume there exist constants e > 0, a^ > 0, b^, and b^ such that the 

following conditions are satisfied by the functions N^ and « 

N,(x,t) 
£ — £ b^ for all x f 0 and all te[Oj"), 

N^(0,t) = 0 for all te[0,*), 

, N-Cx.t) 
— + G _< £ b^ for all X 0 and all te[0,<»), 

NgfO.t) = 0 for all te[0,~). 
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— + e 

(b) 

N,(x,t) 

(a) 

Fig. 18. Conditions on elements and H^. (a) Nonlinear 

conductance, (b) Nonlinear resistance. 

Then for each e^ of the network corresponding to a current input r with 

.00 2 
jg r (t)dt < » a constant can be calculated so that 

In e^^(t)dt <.K^ /q r^(t)dt. 

.00 2 

Similarly for each y^ corresponding to an input r with r (t)dt < <» 

a constant L_, can be calculated such that 
± 

-00 2 fOO 2 
I q  (C)dt 1 Jq r (t)dt. 

It is interesting to observe that by varying the constant a^ the 

condition on element can be relaxed if a more stringent condition is 

placed on element and conversely. Hence, a tradeoff in conditions 

is revealed here. 

Now consider the system shown in Fig. 19 formed from the inter­

connection of two linear systems with two nonlinearities. The non-

linearities are memoryless and characterized by the functions Nj^ and N^. 
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The constant gain k in the outer feedback loop is nonnegative. Systems 

modeled by differential equations are represented by the blocks 

labeled H^(s) and Hgfs). It is assumed these functions of s are in 

the form 

Jo 

and 

Jo 

J 

ïï,(s) = 

2 j 
Î d.,sJ 

j-o 

where d ^ f 0 and d _ f 0. Then it is assumed the systems represented 
"l^ ^2_ _ 

by the blocks labeled H^(s) and HgCs) each have input u and output v 

which satisfy, respectively, the differential equations 
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and 

The superscript denotes differentiation of that order. The two 

the left half plane. The assumption Is made, of course, that each 

block In Fig. 19 has all inputs and outputs square integrable over 

any finite time-interval. 

Application of Theorem 8 produces the following. Assume there 

and HgCjw) lie within the appropriate shaded regions of Fig. 20 

for u)e(-",«>) and do not encircle the unshaded regions. Further, assume 

there exist constants 0 < 6^ < 1 and 0 < dg < 1 such that the graphs 

of the nonlinearities lie within the appropriate shaded region of 

Fig. 20. Now if 

polynomials £ d ^s^ and E d.^s^ each have all zeros strictly in 
j=0 j=0 

exist constants < a^ < 0 and ^2 ^ ^ ^ such that the loci of 

then in the Lg sense a bound on the "size" of any input or output of 

any block of Fig. 19 can be calculated in terms of a bound on the "size" 

of the input r. Being more specific, consider the output c corresponding 
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b, -a 
1 
•) 

a 
1 

-a 
6 

Fig. 20. Graphical conditions imposed on components 
of system in Fig. 19. 

to an input r. For each D and each set of initial conditions there 

exists a C such that 

/q r^(t)dt < D 

implies 

/q c(t)^dt < C. 
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Loosely speaking, this means an input r which becomes small rapidly 

enough in the remote future leads to an output c which becomes small 

in the remote future. 

It is interesting to observe the conditions imposed on the system 

of Fig. 19 are in a form which reveal tradeoffs. For instance, if 

is decreased while increasing 6^^ proportionately, then the conditions 

remain satisfied. This corresponds to relaxing the condition on the 

nonlinearity at the expense of the condition on the nonlinearity N^. 

Now boundedness results in the sense of the norm are presented 

for a set of simultaneous functional equations. These results can be 

shown to specialize to the results given above for the network of Fig. 

17 and the system represented in Fig. 19. Consider the equations 

e^ = r + w^ - kyg - y^ 

*2 = *2 + fl - ̂ 4 

*3 = *3 + fl 0% 

=4 = *4 + ̂ 2 

y^ = H^e^ for i = 1, 2, 3, 4 

where each is a relation on each Wi&LgCO,*), and the con­

stant k is nonnegative. These equations are clearly of the form of 

equations (2) where r corresponds to x. 

The block diagram corresponding to equations (6) is shown in Fig. 

21. This system is clearly in a suitable form for application of 

Theorem 8. Let subloop 1 denote the loop having relations and 
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subloop 1 subloop 2 

Fig. 21. Block diagram of functional equations for 
Example II. 

and subloop 2 denote the loop having relations and From the 

structure of the interconnection, it seems a reasonable approach is to 

assume subloop 1 has a margin of boundedness 6^ and subloop 2 has a 

margin of boundedness dg. Then if the transformed system has the same 

structure, boundedness conditions will involve the additional loop 

corresponding to the loop containing and k. 

Utilizing the above approach leads to the following results. Assume 

the single-loop system possessing open-loop relations and has a 

margin of boundedness 6^. Further, assume the single-loop system possess­

ing open-loop relations Hg and -H^ has a margin of boundedness ôg- Then 

boundedness is assured if 

where for i = 1, 2 
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2b a 
(- ) if H. is conic with 
bj-ai 1 

"i 
constants (au,b^) 

- 2a. 
1 

if - a^I is positive 

In the transformed system the loop containing Hg', and k 

corresponds to the loop containing and k. This is found true 

later due to the fact B' = B. The and n2 defined above are found 

from Theorem 8 to be such that is inside and H2' is inside 

("^2*^2^' Hence, the influence of the loop involving Hg', and 

k is indicated by the term in the above inequality. 

For the special case k = 0 the outer feedback loop is broken so 

boundedness of the entire system is implied by boundedness of subloops 

1 and 2. The above boundedness conditions reflect this by becoming 

*^1*^2 ^ this is already true from the definition of a margin of 

boundedness 6. Effectively the above conditions reduce to requiring 

the conditions of Theorem 5 of Chapter 3 be satisfied for both subloop 

1 and subloop 2. 

Now the results presented for the network of Fig. 17 are found to 

be a special case of the boundedness results presented for equations 

(6) . l?irst observe that with each w^ set equal to zero and k = 1 the 

equations of the network are of the same form as equations (6). Assump­

tions made on the circuit elements guarantee each is a relation on 

V.")-

Now it is shown conditions satisfied by elements of the network 

guarantee boundedness. Since and are passive, both G^(T)y^(T)dT 
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and Jq ^2(^)72(^)^1 are nonnegative for all te[0,<»). But in the space 

/ J  e ^ ( T ) y ^ ( T ) d T =  < e ^ t ' ^ " l ® l ^ t ^  a n d  / J  e 2 ( T ) y 2 ( T ) d T  =  < ^ 2 t ' '  

Hence, and H2 are both positive relations on Lg^CO,*). Now, referring 

to Fig. 18, select 0 < 6^^ < 1, 0 < 6^ < 1, a^^ < 0, and < 0 such that 

- ° ̂3> - '2^^) • '3' 

- — + 6 (-^) = b. . This can be done since the first two equalities 

*1 *2 effectively determine the ratios — and — while the last two equalities 
^1 *2 

determine particular values of a^ and ag. Now since and H2 are both 

positive relations, the relations H^-a^I and H2-a2l are also both 

positive. Further, from Lemma 2 of Chapter 3, is inside {- 5^(^^), 

«4 " ''2^2^'. - I; + '• 

from Case 2 of the definition of a margin of boundedness 6 it is seen 

subloops 1 and 2 have, respectively, margins of boundedness 6^ and 5,. 

All that is needed now to infer boundedness is that ^ ~ 

But - 5^(^^) = a^ and - "^2^2^^ = ̂  + E implies 

4l'2 ° ' 4*132-

Thus the network is found to be bounded in the sense of the Lg norm. 

The specific bounds given on the "size" of each e^ and y^ follow from 

the manner in which Theorem 8 is proven and the fact that each w^ is 

zero. 
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Now it is shown the results given for the system of Fig. 19 are 

obtained as a special case of the results given for the system of Fig. 

21. Let the relations and be used to model, respectively, the 

nonlinearities and Further, let the relations and Hg model, 

respectively, the blocks labeled H^(s) and HgCs). From the discussion 

of the class of operators Q in Chapter 3, it is clear and are 

members of Q having, respectively, Laplace transforms H^(s) and HgCs). 

Further, from the differential equation models of and Hg, it is 

clear initial condition responses are in LgCO,™). The functions w^ 

can be used to account for initial condition responses and are also 

in LgCO,*). It is now easily found the system of Fig. 19 has functional 

equations of the form of equations (6). 

Now it is shown conditions guaranteeing boundedness of equations 

(6) are satisfied under conditions imposed on the system of Fig. 19. 

From Lemmas 1 and 2 of Chapter 3, it is seen the conditions placed on 

the Nyquist diagram of and the graph of imply is conic with 

constants (2^,b^) where b^ < < 0 and is inside the sector 

1 1 

'-b[-

where 0 < 6^ < 1. This implies, from Case lb of the definition of a 

margin of boundedness 6, that the single-loop system possessing open-

loop relations and has a margin of boundedness 6^. Similarly, 

it is found the single-loop system possessing open-loop relations 

and has a margin of boundedness Now boundedness in the sense 

of the L^ norm is assured if 
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4b^a.b.a.k 

But this is exactly the condition under which results for the system, 

of Fig. 19 are given. 

Now the boundedness results presented for equations (6) are 

obtained from Theorem 8. Assume the conditions given are satisfied. 

Select A = {3,4} and C = {1,2}. The matrix B is found from 

equations (6) to be 

B = 

0 

1 

1 

0 

-k 

0 

0 

1 

-1 

0 

0 

0 

0 

-1 

0 

0 

Then the matrix B' is easily found to be 

B' 

Ci+dj -k -1 0 

1 =2+^4 0 -1 

1 0 0 0 

0 1 0 0 

Now it is not difficult to find that c^ + d^ Cg + d^ = 0 due to the 

fact that subloops 1 and 2 have margins of boundedness 6^ and dg; 

respectively. Note this means the transformed system has the same form 

as the original system since B' = B. This leads to 
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1 -kHg -Hg 0 

1 0 -n* 

0 1 0 

0 -112 0 1 

Calculation of the successive principal minors produces the following 

sufficient conditions for boundedness: 

1 - kn^ng > 0. 

(1 - Hgn^) - kn.j^n2 > 0» 

(1 - ngni)^! - n^Ti2) - ^ 

Clearly the first two conditions can be eliminated since they are 

Implied by the third. Now, due to the conditions on subloops 1 and 

2, it is found that 1 - = 6^ and 1 - n^n2 = ëg. Hence, the 

system is bounded if 

But this condition is assumed to be satisfied. 

Example 111: Some properties of the solutions of the following 

system of differential equations involving time delay are investigated 

here: 

Xj^(t) » - x^(t) - .ZSxgCt) - 4.5Xg(t) - .25x^(t-.758) 

I - Clbj^j* hj] » 

- .25N^[x^(t-.758),t] + .25r(t) 
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Xgft) = - 1.25x2(t) - A.Sx^Ct) - .25x^(t-.758) 

(7) 

- .25N2[18x2(t) + X2(t),t] + .25r(t) 

Xgft)  =  Xgft )  - 2x2( t ) .  

It Is assumed the time-varying nonlinearities and are continuous 

functions of both arguments and that the input r is a continuous 

function of time. 

Strictly speaking, the question of existence of solutions to (7) 

need not be considered in a stability investigation. However, informa­

tion concerning this question is usually desired and is readily avail­

able in this particular situation. In Halanay [2] it is shown that 

given a continuous function v^(t) equal to x^(t) on [-.758,0] and 

given values for X2(0) and x^CO), a continuous differentiable solution 

exists for equation (7) on [O,»). This solution can be constructed by 

replacing x^(t-.758) in (7) by v^(t-.758) in the time interval [0,.758]. 

By the above continuity assumptions there exists a solution on [0,.758]. 

This solution in turn can be used to produce a solution on [.758,1.516]. 

Repeating this process ^ infinitum produces a solution on [0,«). 

Application of Theorem 8 yields the following results concerning 

solutions of equations (7). Assume the nonlinearities and Ng 

satisfy the following conditions: 

2.33x^ ̂  xN^(x,t) £ 5.67x^ for all x and all te[0,®o), 

2.75x^ _< xN2(x,t) £ 6.00x^ for all x and all te[0,«'), 

N^(0,t) = N2(0,t) = 0 for all tE[0,*). 
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Then for each number D and each set of initial conditions, numbers 

A^, and A^ can be calculated such that for each input r with 

-oo 2 J r (t)dt < D 
0 

a corresponding solution of equations (7) satisfies the inequalities 

/ x.^(t)dt < A for 1 = 1,2,3. 
0 ^ 1 

Theorem 9 can be utilized to obtain further information concerning 

properties of solutions to equations (7). Let and satisfy the 

following conditions for all x and y and for all teCO,"). 

2.33(x-y)^ £ (x-y)[N^(x,t) - N^(y,t)] £ 5.67(x-y)^, 

2.75(x-y)^ ± (x-yOCNgCx.t) - NgCy.c)] 1 6.00(x-y)^. 

These conditions are satisfied if, for instance, each and is 

9N (x,t) 
differentiable in the first argument with 2.33 <_ £ 5.67 and 

oX 

aN,(x,t) 
2.75 £— _< 6.00 for all x and all teCO,®®). Now let r and r' be 

.00 2 

inputs satisfying the condition J [r(t) - r'(t)] dt < and correspond-
0 

ing under identical initial conditions with the, respective, solutions 

of equations (7) [x^(t), XgCt), Xg(t)]^ and [x^'(t), Xg'Ct), x^'Ct)]^. 

Then constants can be calculated independent of initial conditions 

such that for i - 1,2,3 

/*" [x. (t) - X '(t)]̂ dt £K J [r(t) - r'(t)]̂ dt. 
0 ^ ^ ^0 
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Now, in order to obtain the above results, equations (7) must be 

put in functional form. It is desired to view the nonlinearities and 

Ng as relations on Hence, expressions are needed for the 

inputs x^(t-.758) and ISx^Ct) + XgCt) of these relations. These expres­

sions are obtained from the well-known result of the theory of linear 

differential equations which gives the solution of the nonhomogeneous 

problem in terms of solutions of the homogeneous problem. 

T 
Let [x^(t), XgCt), XgCt)] be a solution of equations (7) corre­

sponding to the input r for the initial conditions v^(t) on [-.758,0], 

XgCO), and x^CO). Then from the first equation in (7) it is clear that 

for teLO,") 

x^(t) = e %^(0) + g-(t-T)[_ _ 4.5X2(1) 

- .25x^(1-.758) - .25N^ [x^(t-,758),t] + ,25r(T)]dT, 

Now define the unit step function to be 

0 for t < 0 
u(t) 

1 for t > 0 

Referring to the discussion of how a solution of equations (7) is con­

structed, it is seen that for teCO,®) 

(v (t-.758) for 0 < t < .758 fTolt-' 
X. (t-.758) = 

758)^^(0) for t .758 

+ r u(t-.758-?)e"(t-'758-T)[_ 25% (?) _ 4.5x„(t) - .25x.(T-.758) 
A u  o  y  

(8) 

- .25Nj^[x^(t-.758),t] + .25r(T)]dT. 
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Now defining the matrix 

A = 
-1 0 

1 -2 

it is seen from the last two equations of (7) that for te[0,") 

X2(t) 

[xjCt) 

At *2(0) = e 
XgCO) 

jt gA(t-T) [-.ZSxgC?) - A.SxgCx) - .25XJ^(T-.758) 

- .ZSNgClSxgCT) + X2(t),t] + .25r(T),0]\dT. 

All 
Calculating e it is found that 

ISxgCt) + XgCt) = (19e"^ - 18e"2t)x2(0) + ISe'^'^XgCO) 

+ [19e"(t-t) _ 25% (t) _ 4.5X,(T) (9) 

-.25x^(t-.758) - .25N2[18x3(t) + X2(t),t] + .25r(T)]dT. 

From the above it is clear each solution of equations (7) must 

satisfy the integral equations (8) and (9), This suggests the following. 

Let and H2 be relations on which satisfy, respectively, the 

equations 

H,x(t) = N,[x(t),t] 
X X 

and 

HgxCt) = NgCxft),t]. 
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Since only solutions of equations (7) are of Interest, It Is assumed 

that the domains of and are each the class of continuous functions. 

Next, let Hg and be operators on Lg^CO,") which satisfy, respectively, 

the equations 

HgxCt) = /q u(t-.758-t)e ^'^~*^^^~^^x(T)dT 

and 

H^x(t) = /q [19er(t-T) _ l8e"^^^"^^]x(T)dT. 

Obviously and are both members of the class Q of linear time-

Invariant operators. Now consider the set of functional equations 

+ y^ 

=2 - "2 + 

eg - .25r + w^ - .25y^ - .ZSy^ - .25y^ 

e^ = .25r + w^ - - .25y2 - .25y^ 

^1 ~ \®1 ^ ~ 

where each w^cLgCO,*). Clearly these equations are in the form of 

equations (2). 

It is now found for appropriate definitions of each e^ and w^ 

that solutions of (7) satisfy the above functional equations. Let 

T 
[x^(t),x2(t),xg(t)] be a solution corresponding to the input r and 

the initial conditions v^(t) on [-.758,0], XgCO), and Xg(0). Define 

z^(t) and ZgCt) by 
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/ v^(t-.758) for 0 _< t £ .758 ̂  

^l(t) = { > 

^ e-(t-'758yy^(o) for t > .758 j 

and 

ZgCt) = (19e"t _ 18e"^')x2(0) + l^e'^tx^CO). 

Then define each e^ and by the following: 

e^(t) = x^(t-.758), 

e^(t) = ISxgCt) + X2(t), 

eg(t) = -.25x2(t) - 4.5xg(t) - .25x^(t-.758) 

- .25N^[xj^(t-.758),t] + .25r(t), 

e^(t) = -.25x2(t) - 4.5xg(t) - .25x^(t-.758) 

-.25N2[18x2(t) + X2(t),t] + .25r(t), 

w^(t) = z^(t), 

W2(t) = z^ft), 

Wg(t) = w^(t) = -.25z^(t) - .25z2(t). 

Clearly, since and Z2 are in each is in Now 

it is seen from equations (8) and (9) that the functional equations 

are satisfied. For stability purposes only solutions for which r, 

each e^, and each y^ belong to L2gL0,^) are considered. In this 
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situation it is seen from the earlier discussion of solutions of 

equations (7) that r, each e^, and each are continuous. Hence, 

these functions all belong to Lg^CO,"). Thus, in a certain sense, 

the set of solutions of (7) are a subset of the set of solutions of 

the functional equations. This means stability properties of the 

functional equations can be used to Investigate properties of solutions 

to equations (7). 

Now Theorem 8 is employed to obtain boundedness conditions for the 

functional equations. The operators and have, respectively, the 

Laplace transforms 

and 

H3(s) 

H,.(s) 

.758s 

s+1 

s+20 
(s+1) (8+2) 

Referring to Lemma 1 of Chapter 3, it is found from the Nyqulst diagrams 

of Fig. 22 that H_ + .51 is a sositivs relation and H, is outside the 
3 • 4 

sector {-5.33,-.5}. Hence H^-a^I Is positive and H^ is conic with con­

stants (a^,b^) where a^ = -.5, a^ = -.5, and b^ = -5.33. Assume for the 

present that relations H^ and Hg are conic with, respectively, constants 

(*1*^1^ andCizjbz). Now let A = {1,2} and C = {3,4}. The B matrix is 

easily found from the functional equations to be 

B 

0 

0 

-.25 

0 

0 

0 

0 

-.25 

1 

0 

-.25 

-.25 

0 

1 

-.25 

-.25 
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ImH^ 

o
 ii 3
 

-.5 y 1 yReH^ 

ImH 

-5.33 

ReH 

Fig. 22. Nyquist diagrams for Example III. 

The B' matrix is given by 

B' = (I + B[diagdj])"l(B + [dlagc^]) = 

0 0 1 0 

0 0 0 1 

-.25 0 . 25dj^-. 25+Cg -.25 

0 -.25 -.25 25d„-.25+c, 
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Now the diagonal terms of this matrix suggest the following. Let 

the single-loop system possessing open-loop relations and -.25H^ have 

a margin of boundedness 6^. Similarly, let the single-loop system 

possessing open-loop relations and -.ZSHg have a margin of boundedness 

dg. Note, since the conic nature of and is known, specification 

of 6^ and determines the conic nature of and H2. It is easily 

found that the above conditions imply .25d^ + c^ = .ZSdg + c^ = 0. This 

means the transformed system has the same interconnection structure as 

the original system since it is now true that B' = B. It should be 

observed at this point that the above assumptions imply l-.ZSn^Hg = 6^^ 

and l-.ZSngH^ = 

Now further manipulations produce 

I - [Ibjj'lnj] = 

1 0 -n, 

0 10 

•.25ni 0 l-.25n 

-n. 

3 "'25^4 

-.25^2 -.25^2 l-,25ri^ 

Calculation of the successive principal minors gives the following 

boundedness conditions: 

1 - .25n^n2 - -25112 > 0, 

(l-.25nj^n3) (l-.25n2n^) - .25112(1-.25n2n^) - .25n^(i-.2511103) > 0, 

The first condition can be eliminated since it is implied by the second. 

Further, from expressions given for and in Theorem 8 and Remark 2 



www.manaraa.com

101 

and from the above expressions for 6^ and dg, it is found boundedness 

is guaranteed if 

6^02 - .ZSGg - .2756^ > 0. 

From the above, the results cited earlier for the differential 

equations (7) can be shown true. To see this consider the particular 

situation of 6^^ = .582 and ëg ^ .551. It is easily found that 

6^62 - .2502 - .2756^ > 0. 

Hence, the functional equations are bounded. It is seen from the 

definition of a margin of boundedness 6 that it is required .25H^ be 

inside the sector {6^,2-6^} and .25H2 be inside the sector 

{.187 + .90762» 2-.90762For the above values of 5^ and 62 this 

means it is required that be inside {2.33, 5.67} and H2 be inside 

{2.75, 6.00}. 

Now assume that in equations (7) the nonlinearities and N2 

satisfy the following conditions: 

2.33x^ £ xN^(x,t) £ 5.67x^ for all x and all teCO,"), 

2.75x^ £ xN2(x,t) < 6.00x^ for all x and all teCO,"), 

N^(0,t) = NgCOgt) = 0 for all te[0;"). 

Hence, from Lemma 2 of Chapter 3, the relations and Hg are inside the, 

respective, sectors {2.33, 5.67} and {2.75, 6.00}. Now select a set of 

initial conditions. This corresponds to fixing the w^ functions. Then 

pick a number D and a continuous input r such that 
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/q r^(t)dt < D. 

It follows there exist constants K and L such that for a corresponding 

solution [xj^(t) ,x2(t) jX^Ct) of (7) 

/q e^^(t)dt « /q x^(t-.758^)dt < K 

and 

/q e^^(t)dt = /Q C-.25x2(t) - A.SXgCt) - .25Xj^(t-.758) 

- .ZSNgClBXgCt) + X2(t),t] + .25r(t)]^dt < L. 

The first inequality implies there exists an such that 

/Q X^(t)^dt < Ay 

T 
From the equation given earlier for [x2(t),xg(t)] , it is easily found 

that 

XgCc) = e'^XgCO) + e"(t"^)e^(T)dT 

and 

XgCt) = (e ̂ -e ^^)x2(0) + eT^^x^CO) 

Hence, both Xg and x^ are in the form of a sum of a fixed function in 

L,CO,«°) with the output of an operator which is in the class Q. It is 

easily seen that each operator has a Nyquist diagram which lies within 

a circle in the complex plane with center at the origin. Thus, by 

Lemma 1 of Chapter 3, it is seen each operator has a finite gain. Since 
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the lle^ll^ < L, it is then clear there exists constants and 

such that 

Iq X2^(t)dt < A^ 

and 

/q X2^(t)dt < Ag. 

Now assume the nonlinearities and Ng satisfy the following 

conditions for all x and y and for all teCO,"): 

2.33(x-y)^ <. (x-y)[N^(x,t) - N^(y,t)] _< 5.67(x-y)^, 

2,75(x-y)^ £ (x-y) [N2(x,t) - NgCyit)] _< 6.00(x-y)^. 

Then from Lemmas 1 and 3 it is clear the incremental counterparts of 

the above boundedness conditions are satisfied. This Implies continuity 

by Theorem 9. Now fix the functions by selecting a set of initial 

conditions. Next let r and r' be two continuous inputs with correspond­

ing solutions Cx̂ (t), XgCt), x^Ct)]^ and [x^'(t), X2'(t), Xg'(t)]^, 

respectively. Assuming 

Jq Cr(t) - r'(t)]^dt < 

it is found using the obvious definitions for e^^' and e^' that there 

exists B and C such that 

Jq [e^(t) - e^'(t)]^dt <. B /q Cr(t) - r'(t)]^dt 

and 

/q Ce^(t) - e^'(t)]^dt 1 C /q Cr(t) - r'(t)]^dt. 
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The first inequality obviously implies there exists a such that 

/q [x^(t) - x^'(t)]^dt £ Jq [r(t) - r'(t)]^dt. 

Now examine the equations given above for Xgft) and Xg(t). Since 

initial conditions are fixed, it is seen that 

Xgft) - = /Q e"(^"^)[e^(T) - e^'(T)]dT 

and 

XgCt) - Xg'Ct) = ft[e-(t-t)_e-2(t-t)][e4(T)-e4'(T)]dT. 

Since the above integral operators have finite gain and since 

I|e^-e^'|< c||r-r'||^, it is clear there exist constants Kg and 

such that 

/q [XgCt) - X2'(t)]^dt _< Kg /q [r(t) - r'(t)]^dt 

and 

/q Cx^Ct) - X2'(t)]^dt £ K^ /q [r(t) - r'(t)]^dt. 
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CHAPTER 6 : CONCLUSION 

Conditions sufficient to guarantee boundedness or continuity of a 

multiple-loop nonlinear time-varying system are presented here. Bound­

edness results are derived in terms of the interconnection structure 

of the multiple-loop system and in terms of gains of the relations inter­

connected to form the system. The range of application of these results 

is greatly expanded through a certain transformation which leads to a 

result involving sector conditions. Continuity results are found to be 

available from application of boundedness conditions to a system which 

relates changes in inputs to changes in outputs. This leads to results 

Identical with boundedness results but with sector conditions replaced 

by their incremental counterparts. 

An interesting illustration of the theory is provided by examining 

a system formed by the interconnection of an arbitrary number of 

memoryless nonlinearities with a number of linear time-invariant rela­

tions. It is found Inputs belonging to a bounded subset of the space 

always correspond to outputs which belong to a bounded subset of the Lg 

space under the following conditions: 

(1) The Nyquist diagram of each linear relation either 

lies outside an appropriate circle in the complex plane and 

does not encircle this circle or the Nyquist diagram lies 

wholly within an appropriate circle. 

(2) The graph of each nonlinearity lies in a region of 

the plane enclosed by two appropriate straight lines passing 

through the origin. 
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The exact meaning of appropriate in (1) and (2) is determined by the 

interconnection structure. By changing only (2), the above boundedness 

conditions become continuity conditions. Inputs which are arbitrarily 

"close" in the sense of the L2 norm lead to outputs arbitrarily "close" 

in the sense of the L2 norm if (2) reads: The slope of each nonlinearity 

has appropriate upper and lower bounds. 

In a certain sense the general theory is found capable of providing 

some feeling of "how stable" a multiple-loop system is. If boundedness 

conditions are satisfied, then specific bounds on system outputs in 

terms of bounds on system inputs can be obtained. Further, if continu­

ity conditions are satisfied, then specific bounds on deviations in 

system outputs in terms of deviations in system inputs are available. 

If conditions on the multiple-loop system are tightened, then bounds 

on system responses and deviations in system responses become tighter. 

Hence, the margin by which stability conditions are satisfied is some­

what of an indication of the "degree of stability" for the system. 

Much can be inferred about stability conditions which the theory 

can provide solely by examining the form of the interconnection struc­

ture. Experience indicates the relative positions of the subloops can 

be used to guide application of the theory. In applications presented 

here it is found that if the subloops of the transformed system each 

satisfy stability conditions by a certain margin then conditions for 

the entire system can be phrased in terms of these margins. This often 

reveals tradeoffs in conditions on relations which allow stability to 

be retained. 
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Several applications of the theory to specific multiple-loop non­

linear time-varying systems are presented. Three particular systems 

considered are the following: 

(1) a certain Interconnection of three specific linear 

time-Invariant relations with a linear time-varying relation, 

a plecewise linear relation, and a hysteresis nonlinearity, 

(2) a network formed from a passive Impedance, a passive 

admittance, a nonlinear time-varying resistance, and a non­

linear time-varying conductance, 

(3) a third order nonlinear time-varying differential 

equation involving time delay. 



www.manaraa.com

108 

LITERATURE CITED 

[1] F. R. Gantmacher, Matrix Theory. New York: Chelsea, 1959. 

[2] A. Halanay, Differential Equations. New York: Academic, 1966. 

[3] J. M. Holtzman, Nonlinear Systems Theory. Englewood Cliffs, 
New Jersey: Prentice-Hall, 1970. 

[4] L. V. Kantorovich and G. P. Akilov, Functional Analysis in 
Normed Spaces. New York: Macmillan, 1964. 

[5] J. L. Kelley, General Topology. New York; American, 1955. 

[6] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of 
Functions and Functional Analysis. Rochester, New York: 
Graylock, 1957. 

[7J T. L. Saaty, Modern Nonlinear Equations. New York; McGraw-Hill, 
1967. 

[8] I. W. Sandberg, "A Frequency-Domain Condition for the Stability 
of Feedback Systems Containing a Single Time-Varying Nonlinear 
Element," Bell Sys. Tech. , vol. 43, no. 4, part 2, pp. 1601-
1608, July 1964. 

[9] , "On the Boundedness of Solutions of Nonlinear 
Integral Equations," Bell Sys. Tech. £., vol. 44, no. 3, pp. 
439-453, March 1965. 

Cl03 , "On the l^-Boundedness of Solutions of Nonlinear 
Functional Equations," Bell Svs. Tech. , vol. 43, no. 4, 
part 2, pp. Î581-1599, July 1964. 

[11] , "Some Results on the Theory of Physical Systems 
Governed by Nonlinear Functional Equations," Bell Sys. Tech. 
J[., vol. 44, no. 5, pp. 871-898, May-June 1965. 

[12] A. E. Taylor, General Theory of Functions and Integration. 
Waltham, Mass.: Blaisdell, 1965. 

[13] J. C. Willems, "The Generation of Lyapunov Functions for Input-
Output Stable Systems," SIAM J. Control. vol. 9, no. 1, pp. 
105-134, February 1971. 

[14] G. Zames, "Nonlinear Time-Varying Feedback Systems—Conditions 
for L^-Boundedness Derived Using Conic Operators on Exponentially 
Weighted Spaces," Proc. 1965 Allerton Conf., pp. 460-471. 



www.manaraa.com

109 

[15] , "On the Input-Output Stability of Time-Varying Non­
linear Feedback Systems—Part I: Conditions Derived Using Con­
cepts of Loop Gain, Conicity and Positivity," IEEE Trans. on 
Automatic Control, vol. AC-11, no. 2, pp. 228-238, April 1966. 

[16] , "On the Input-Output Stability of Time-Varying Non­
linear Feedback Systems—Part II: Conditions Involving Circles 
in the Frequency Plane and Sector Nonlinearities," IEEE Trans. 
on Automatic Control, vol. AC-11, no. 3, pp. 465-476, July 1966. 



www.manaraa.com

110 

ACKNOWLEDGMENTS 

I am Indebted to my major professor. Dr. Anthony Michel, without 

whom this endeavor might never have been undertaken. Our discussions 

of several challenging areas of study provided the stimulus for my 

research. 

My wife, Mary, gave me encouragement throughout my graduate 

studies and was always confident of success. We have shared the 

sacrifices and satisfactions. I wish to thank Mary for helping in 

the final preparation of this dissertation. 

I am grateful for the financial support I received from the 

Office of Naval Research under contract N00014-68-A-0162 and from 

the Engineering Research Institute at Iowa State University. 



www.manaraa.com

Ill 

APPENDIX A 

Several Linear Spaces 

Several types of linear spaces are discussed here. A thorough 

discussion of these spaces is found in many texts [4], [6], [12]. First 

a definition is given for a linear space. In this definition R denotes 

either the field of real numbers or the field of complex numbers. A 

number belonging to R is referred to as a scalar. 

Definition: Let X be a set of elements for which the algebraic 

operations of addition and scalar multiplication are defined. If 

x,yeX then the addition operation produces a unique element of X denoted 

by X + y. Further, if aeR and xeX then the scalar multiplication opera­

tion produces a unique element of X denoted by ax. The set X along with 

the two algebraic operations is a linear space if the following are true; 

(1) X + y = y + X for all x,yeX. 

(2) X + (y + z) = (x + y) + z for all x,y,zeX. 

(3) There is a unique element of X denoted by 0 such that 

x + 0 = x for all xeX. 

(4) For each xeX there exists a unique element of X denoted 

by -x such that x + (-x) = 0. 

(5) a(x + y) = ax + ay for all aeR and all x,yeX. 

(6) (a + b)x = ax 4- bx for all a»beP- and all xeX. 

(7) a(bx) = (ab)x for all a,beR and all xeX. 

(8) Ix = X for all xeX. 

(9) Ox = 0 for all xeX.I 
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In the above definition if R denotes the field of real numbers, 

then the linear space is referred to as a real linear space. Similarly 

if R denotes the field of complex numbers, then the linear space is 

referred to as a complex linear space. It should be noted no distinc­

tion is made between the number zero and the zero element of X. Which 

is being referred to is always clear from context. 

Now a special kind of linear space, a normed linear space, is 

defined. 

Definition: A normed linear space is a linear space X on which a 

real-valued function referred to as the norm is defined. The value 

of the norm at xeX is denoted by ||x||, and the following properties 

must be satisfied: 

(1) I |x+y| I <. I |x| I + I ly| I for all x,yeX. 

(2) I|ax|I = |a| I|x|| for all aeR and all xeX. 

(3) I|x|I ^ 0 if X ^ 0.| 

Now a definition is given for an inner product space. 

Definition: A complex linear space X is an inner product space 

if there exists on XxX a complex-valued function called the inner product. 

The value of the inner product at (x,y)eXxX is denoted by <x,y>, and the 

following properties must be satisfied: 

(1) <x + y;Z> = <X;Z> + <y;Z> for all x,y:ZEX. 

(2) <x,y> = <y,x> for all x,yeX. 

(3) <ax,y> = a<x,y> for all aeR and all x,yeX. 

(4) <x,x> _> 0 for all xeX and <x,x> ^ 0 if x f 0.| 



www.manaraa.com

113 

For the case of a real linear space, the above definition is 

different. The only changes required are that the inner product be 

real-valued and the bar over <y,x> be removed in property (2). 

Now Lp spaces which are of interest for stability purposes are 

defined. A condition which is violated at most on a set of measure 

zero is referred to as being true almost everywhere. 

Definition: For 1 ̂  p < " the space is defined as the space 

of all real measurable functions x(t) such that |x(t)is Lebesgue 

integrable over T. The space is the space of real measurable 

functions on T such that for each x(t) there exists an M so that 

|x(t)| £ M almost everywhere on T.| 

In the above definition no distinction is made between functions 

which agree almost everywhere. Also the notation LpCt^,") or 

Lp(-",") is often used to denote an space for T = [t^,*) or 

T = (-",«•). 

Each of the L spaces is a normed linear space. If xeL for 
p - p 

finite p, then the norm of x is given by ||x|| = ( /^|x(t)|^dt)^^^. 

For p - 00 the norm of xeL^ is the infimum of the set of all M such 

that |x(t)| _< M almost everywhere on T. This infimum is called the 

essential supremum and denoted by ess sup jx(t)|. Hence for xeL^ 
teT 

it is seen ||x|| = ess sup |x(t)|. 
teT 

The Lg space is distinguished from the other spaces by the fact 

that it is an inner product space. If XiyeLg the inner product is 

defined by <x,y> = x(t)y(t)dt. 
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APPENDIX B 

Relations 

Following Kelley [5] definitions are given here for certain 

manipulations of relations. 

Definition: If H and K are relations on X and c is a real 
e 

constant then: 

H + K = {(x,y):xeDo(H)n Do(K) and there exist images 

Hx and Kx such that y = Hx + Kx}. 

cH = {(x,y):x£Do(H) and there exists an image 

Hx such that y = c(Hx)}. 

KH = {(x,y):there exists z such that (x,z)eH and 

(z,y)eK}. 

H ^ = {(x,y);(y,x)eH}. 

I = {(x,y):xeX^ and y = x}.| 

It is of interest to note that despite the fact addition and 

scalar multiplication are defined, the space of all relations on X^ 

is not a linear space. 
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APPENDIX C 

Completion of Proof for Theorem 7 

It is shown here the hypotheses of Theorem 7 are sufficient to 

guarantee the matrix I - [|b^j|g(Hj)] has an inverse with all non-

negative elements. The following two theorems presented in Gantmacher 

[1, pp. 66 and 71 of Vol. II] are found to be useful. 

Theorem 10: A matrix A having all elements nonnegative always 

has a nonnegative eigenvalue r such that the moduli of all the 

eigenvalues of A do not exceed r. To this "maximal" eigenvalue r 

there corresponds an eigenvector y such that y ̂  0 and y ^ 0. Further, 

the adjoint matrix B,(A) = (Al-A) ̂  | ̂I-A| has all elements nonnegative 

for A ̂ r.| 

Theorem 11: If a matrix G has all off diagonal elements negative 

or zero and the successive principal minors are positive, then all 

principal minors are positive.| 

Now, as in Theorem 7, assume the successive principal minors of 

I - [|h^jlg(Hj)] are all positive. Since the last successive principal 

minor is the determinant of this matrix, the matrix is nonsingular and 

has an inverse. Now from Theorem 10 it is clear the matrix [|b^jjg(H^)] 

has a "maximal" eigenvalue r. Further, the matrix (I - [|b^^|g(Hj)j) 

|l - [|b^j|g(Hj)]| has all elements nonnegative if r <_ 1. But 

|l - [|b^j|g(Hj)]| is the last successive principal minor of 
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I - C|b^j|g(Hj)] and is positive. Hence, if r £ 1 then I - [[b^^lgCH^)] 

has an inverse with all nonnegative elements. 

Now it only need be shown that r ̂  1. Since r is an eigenvalue, 

it is found 

0 = |rl - [|bjj|g(Hj)]| = I {I - [|b.j|g(Hj)]} + (r - 1)11 

This means 1-r is an eigenvalue of the matrix I - [|b^j|g(H^)]. Now 

from the theory of matrices it is known the characteristic equation for 

the n X n matrix B can be written 

n . 
IB - A.I I = (—+ E S, (-&)^ = 0 

k=l 

where each is the sum of all principal minors of order k of the 

matrix B. Thus, letting B = I - [lb^^|g(H^)] and A = 1 - r results 

in 

(r-1)" + " S. (r-1)""^ = 0 
k=l * 

where each is the sum of all principal minors of order k of 

I - L|b^j|g(Hj)]. But from Theorem 11 it is clear all principal 

minors of I - [|b..|g(H )] are positive. Hence, each S. > 0. Now 
j-j j ^ 

it is clear the above characteristic equation cannot be satisfied 

for r > 1. Hence, r £ 1. 
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APPENDIX D 

Completion of Proof for Theorem 8 

It is shown here that the conditions Imposed on in Theorem 8 

are sufficient under the transformation to imply is inside 

First a few properties of conic relations are listed: 

(1) If H is conic with constants (a,b), then for any 

real number k the relation H + kl is conic with 

constants (a + k, b + k). 

(2) If H is conic with constants (a,b) and k > 0, 

then kH is conic with constants (ka,kb). If 

k < 0, then kH is conic with constants (kb,ka). 

(3) If H is conic with constants (a,b) where ab f 0, 

then H ^ is conic with constants (^,^). The 

limiting cases of b -»• " and a -»• -<*> are dealt with 

rigorously in the following manner. If H-al is 

positive where a ̂  0, then H ̂  is conic with 

constants (0,^). Further, if -H + bl is positive 

where b f 0, then H ̂  is conic with constants (^,0). 

Similar properties to the above are proven in [15]. However, the 

notation is somewhat different. 

Assume ieA. Then H.' = H. + d.I. Since H. is conic with constants 
1 1 1  1  

(*i'^i)' is seen by property (1) above that H^' is conic with con­

stants (a^ + d^, b^ + dj,) . Now d^ = - y (b^, + a^) results in a^ + d^ = 

- Y (b^-a^) and b^ + d^ = ̂  (b^-a^). Since ^ (b^-a^) > 0, it is 

found that H^' is inside 
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-1 -1 
Now assume ieC. Then = (H^ + c^I) . The relation is 

conic with constants (a^,b^) where a^b^ 0 due to the fact that 

2b a 
= - (-——) > 0. Hence, by property (3) above, is conic with 

1 1  - 1  
constants , —}. Now by property (1) the relation H. 4- c.I Is 

^1 *1 

1 1 ^1 ^1 conic with constants (— + c., —+ c.). Since c. = - (— )> it 
i 

1 ''i~^i 1 is seen that t— + c. = - (%r ) and — + c. = ' , Since b ^ a., 
b. 1 ^2b.a.' a. i 2b.a 1 i 
1 1 1 1 11 

property (3) can be used again and reveals that (H^ ̂  + c^I) ̂  is 

2b^a. 2b^a^ 2b^a^ 
conic with constants (r , - (r )). Now because n. = - (r ) > 0, 

°i"*l °i"*l ^ i"*i 

it is seen that H.' is Inside {-n. n.}« 
1 1 » 1 

Now consider the remark made following the proof of Theorem 8 con­

cerning the limiting cases for ieC of b^ ̂  " and a^ -+ The case 

bu ^ * is examined first. Assume - a^I is positive. Now = 

^ + c^I) The constant a^ ̂  0 since = -2a^ > 0. Hence, by 

property (3) H. ̂  is conic with constants (0,—), By property (1), 
^i 

•~1 1 1 
H^ + c^I is conic with constants (c^,—^ + c^) . Since c^ = - 2^> 

it is clear that H. ^ + c.I is conic with constants (- • 
X X za. za, 

- 1 - 1  1 1  
Hence, (H^ + c^I) is conic with constants (2a_,-2a^). Since 

= -2a^ > 0, it is true that H^' is inside {-rijilj}. Similarly it can 

be shown that if - H^ + b^I is positive then for the modified 

definitions of c^ and the relation H^' is Inside n^}. 
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